
The graPHIGS Programming Interface:

Technical Reference

SC33-8193-11

���

The graPHIGS Programming Interface:

Technical Reference

SC33-8193-11

���

Note

Before using this information and the product it supports, read the information in Appendix F, “Notices,” on page 407.

Twelfth Edition (October 2000)

This edition applies to the GDDM/graPHIGS Programming Interface, Version 2, Release 2.5, program number

5688-093, AIXwindows Environment/6000 (1.3) AIXwindows/3D feature, Program Number 5601-257, and to all

subsequent releases of this product until otherwise indicated in new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . vii

Who Should Use This Book . vii

Highlighting . vii

ISO 9000 . vii

Related Publications . vii

Part 1. Workstations . 1

Chapter 1. General Information for Workstations . 3

Accessing a Workstation . 3

Description Tables in the graPHIGS API . 5

Chapter 2. Supported Workstations . 15

The X Workstation Family . 15

Additional Notes for DWA Adapters . 36

The XSOFT Workstation . 41

The 6090 Workstation . 43

The 5080 Workstation . 44

The GDDM Workstation . 45

The GDF Workstation . 45

The CGM Workstation . 47

The IMAGE Workstation . 57

Chapter 3. Workstation Description Tables . 65

General Workstation Facilities . 66

General Output Facilities . 69

Polyline Facilities . 74

Polymarker Facilities . 78

Text Facilities . 80

Interior Facilities . 85

Edge Facilities . 89

Color Facilities . 92

Generalized Drawing Primitive (GDP) Facilities . 95

Generalized Structure Element (GSE) Facilities . 97

Escape Facilities . 98

Image Facilities . 100

Advanced Output Facilities . 101

Curve and Surface Facilities . 103

Advanced Attribute Facilities . 104

General Input Facilities . 108

Available Triggers . 113

Locator Devices . 115

Stroke Devices . 117

Valuator Devices . 120

Choice Devices . 124

Pick Devices . 130

String Devices . 133

Button Devices . 138

Scalar Devices . 140

Vector Devices . 141

Break Action . 142

© Copyright IBM Corp. 1994, 2002 iii

Part 2. Distributed graPHIGS API . 143

Chapter 4. The graPHIGS API Nucleus . 145

Connecting to the Nucleus . 145

The Nucleus Description Table . 146

gPafut Command . 149

gPinit Command . 149

gPhost Command . 152

gPq Command . 153

gPterm Command . 154

makegP Command(AIX PS/2 only) . 155

Chapter 5. graPHIGS API Host and Workstation Connectivity 157

The graPHIGS API Gateway Daemon . 157

The SOCKETS Connection Method . 161

graPHIGS/GAM Direct Connection . 163

chgPcon Command . 165

gPgated Command . 168

ls6098 Command . 171

lsgPcon Command . 172

mkgPcon Command . 174

Chapter 6. Enabling User Exits for Conferencing 177

Starting and Stopping the Conference Utility Controller 179

The Conference Controller . 179

The User Exit Routine . 179

The Application Intercept Exit Routine . 181

Part 3. Defaults and Nicknames . 185

Chapter 7. Controlling the Environment with Defaults and Nicknames 187

Overview of Controlling the Environment . 187

The External Defaults File (EDF) . 188

The Application Defaults Interface Block (ADIB) . 189

Defaults . 190

Nicknames . 199

PROCOPTS . 203

Part 4. Character Sets and Fonts . 219

Chapter 8. Character Set Facilities of the graPHIGS API 221

Identifying a Character Set . 221

Identifying a Font . 221

Using the Character Set Facilities . 222

Chapter 9. Character Sets and Fonts Provided by the API 223

Using the Unicode Character Set . 223

Using Kanji Character Sets in the Operating System 223

Character Code Points and Symbols . 224

Chapter 10. User-Definable Fonts . 257

Defining Your Own Characters . 257

Displaying a Text String . 260

Font File Organization Overview . 264

Overview of Font File Contents . 266

iv The graPHIGS Programming Interface: Technical Reference

Font File Naming Conventions . 267

Font File Format Specifications . 268

IBM 5080 Character Set Restrictions . 276

Part 5. Format and Content of Structure Element Records 277

Chapter 11. Structure Element Content as Returned by GPQED 279

General Format . 283

Structure Element Codes . 284

Common Data Types . 289

Output Primitives . 292

Attribute Setting Structure Elements . 307

Transformation Setting Structure Elements . 325

Miscellaneous Structure Elements . 328

Chapter 12. Structure Element Content as Returned by GPQE 333

Output Primitives . 333

Attributes . 339

Modeling and Viewing . 343

Miscellaneous Structure Elements . 346

Appendix A. State Lists . 349

Operating States List (OSL) . 349

The graPHIGS API Descriptor Table (PDT) . 350

The graPHIGS API State List (PSL) . 351

Structure Store State List (SSL) . 352

Workstation State List (WSL) . 353

The graPHIGS API Error State List (ESL) . 363

Utility Function State List (USL) . 364

Appendix B. Event Data Formats . 367

Event Summary . 367

Event Data Format . 367

Appendix C. Plotting with graPHIGS . 371

Plotting on the RS/6000 . 371

Plotting GDF Files . 371

Plotting on AIX PS/2 . 390

Plotting on VM/MVS . 390

Plotting CGM Files . 391

Appendix D. Printing with graPHIGS . 397

Appendix E. How the Mnemonics are Generated 399

Deletions . 399

Abbreviations . 399

Appendix F. Notices . 407

Trademarks . 408

Index . 409

Contents v

vi The graPHIGS Programming Interface: Technical Reference

About This Book

This book provides technical information about the functions and limitations of the graPHIGS API and its

supported workstations. It also contains reference information, both general and specific, about particular

aspects of writing applications, namely on Character Set Facilities and on Defaults and Nicknames. The

purpose of this book is to provide a comprehensive volume of technical information needed to accurately

code or modify applications using the graPHIGS API.

Who Should Use This Book

This book is intended for application programmers.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items

whose names are predefined by the system. Also identifies graphical objects such as

buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a

programmer, messages from the system, or information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information on graPHIGS API products:

v The graPHIGS Programming Interface: ISO PHIGS Subroutine Reference

v The graPHIGS Programming Interface: Understanding Concepts

© Copyright IBM Corp. 1994, 2002 vii

viii The graPHIGS Programming Interface: Technical Reference

Part 1. Workstations

© Copyright IBM Corp. 1994, 2002 1

2 The graPHIGS Programming Interface: Technical Reference

Chapter 1. General Information for Workstations

This chapter contains two areas pertaining to all workstations supported by the graPHIGS API. The first

section, Accessing a Workstation, describes the workstation types and how connection identifiers are used

by the graPHIGS API when opening a workstation. The second section, Description Tables in the

graPHIGS API, provides lists of the initial default values in the graPHIGS API Traversal State List and view

table entries in the Workstation View Table Data at initialization.

Accessing a Workstation

To display graphical data from an application program, the graPHIGS API requires information about the

workstation. The graPHIGS API must know the capabilities and characteristics of the workstation as well

as the information to access the workstation using the operating system. This information is identified to

the graPHIGS API with the workstation type and connection identifier parameters of the Open Workstation

(GPOPWS) and Create Workstation (GPCRWS) subroutines.

The final workstation type and connection identifier used by the graPHIGS API are the result of processing

the nicknames in the External Defaults File (EDF) or the Application Defaults Interface Block (ADIB) and

may differ from the parameters specified on GPOPWS and GPCRWS. See Controlling the Environment

with Defaults and Nicknames.

Workstation Types

Workstations of a certain class that share specific characteristics are referred to as a workstation type. For

example, 5080 workstations are of the same type, although each may or may not have certain optional

features (such as color capability). However, 5080 workstations are of a different workstation type than

NATIVE workstations because of different capabilities.

The workstation category of the user’s physical workstation is identified by the workstation type parameter

on the Open Workstation (GPOPWS) or Create Workstation (GPCRWS) subroutine call.

The graPHIGS API supports the following workstation types:

 Table 1. Workstation Category, Type, and Environment

Category Workstation Type Parameter Environment

6090 6090 VM/CMS MVS

5080 5080 VM/CMS MVS

GDDM Devices GDDM VM/CMS MVS

GDF Files GDF VM/CMS MVS AIX RS/6000

CGM CGM VM/CMS MVS AIX RS/6000

X X AIX RS/6000

X XSOFT AIX RS/6000

X XDWA AIX RS/6000

IMAGE files IMAGE AIX RS/6000

When you specify the workstation type parameter on the GPOPWS or GPCRWS subroutine calls, the

workstation type is passed as an 8-byte character string, left-justified with blanks padding on the right of

the type (example, ’NATIVE ’).

Refer to Workstation Description Tables for information about the supported workstation types.

© Copyright IBM Corp. 1994, 2002 3

For information about using nickname processing to pass workstation types to the graPHIGS API, see

Controlling the Environment with Defaults and Nicknames.

The data values of the Workstation Description Table (WDT) describe the capabilities and characteristics

of a workstation type. The data values of the WDT are available to your application through the WDT

group of inquiries. Refer to WDT Inquiries for additional information. The workstation type parameter of the

WDT inquiries identifies the category of workstation whose data is requested. (The WDT group of inquiries

return only data that does not change during the processing of your application. The WSL group of

inquiries return the current state of workstation data values that your application can change.)

When either the Open Workstation (GPOPWS) or Create Workstation (GPCRWS) subroutine calls create a

workstation resource, the graPHIGS API creates a new unique workstation type. This created (″realized″)

workstation type precisely describes the actual capabilities of the created workstation. For example, 5080

workstations may, in general, support the dial input devices. However, a particular 5080 may not have the

dials present. The actual WDT will not have an entry for the valuator devices, where the general

(″generic″) WDT will have such an entry. The actual workstation type is available to your application using

the Inquire Realized Workstation Category and Type (GPQRCT) subroutine. You can then use the returned

realized workstation type as the wstype parameter on the WDT group of inquiries.

Connection Identifiers

The connection identifier specified on Open Workstation (GPOPWS) and Create Workstation (GPCRWS)

subroutines is used by the graPHIGS API to access a specific device for processing. The identifier is

passed to the operating system, typically for allocation of the workstation.

For the 6090, the connection identifier is an ″*″ (asterisk).

For the 5080 in the S/390 environment, the connection identifier must be the DDNAME (MVS) or FILEDEF

name (VM) which defines the device you wish to access. On VM, for example, issue the following

command prior to running your application:

 FILEDEF IBM5080 GRAF 120

You would specify IBM5080 on GPOPWS or GPCRWS as the connection identifier parameter and the

graPHIGS API would attempt to open a 5080 at virtual address 120.

For GDDM supported devices, the connection identifier is used as the ″name-list″ by the graPHIGS API

when it issues the GDDM call DSOPEN. See GDDM Base: Programming Reference for details of the

DSOPEN call and the name-list parameter. For example, specifying a connection identifier of * will indicate

to GDDM (by passing a name-list of ″*″) that the user console is to be used as the workstation.

GDDM nickname processing may be performed on the data passed on the DSOPEN call (see GDDM

Base: Programming Reference). The DSOPEN call issued by the graPHIGS API takes the form:

DSOPEN (DEVID, FAM, DEVTOK, 0, 0, NAMEC, NAMEL)

 | | | | |

 | | | | name list, the first entry

 | | | | of which is set equal to

 | | | | the connection identifier

 | | | name count and is always set to 1

 | | GDDM device token (always ’*’)

 | GDDM family (always 1)

 [default] encoded device identifier

The connection identifier defines the workstation you wish to access.

v The connection identifier for a NATIVE workstation is the device name for the workstation you are using.

The device names are:

 ’hft/n’ Lower case; causes graPHIGS API to open /dev/hft/n

4 The graPHIGS Programming Interface: Technical Reference

’*’ Causes graPHIGS API to open /dev/hft (which will open

dev/hft/n where n is the next available number)

v The connection identifier for an X workstation specifies which X server the graPHIGS API workstation

window will be associated with.

 ’*’ the graPHIGS API will connect to the server specified in

the operating system environment DISPLAY variable.

’host:serverscreen This is a standard X server specification, where host is the

host name where an X server is running, server is the

server ID, and screen is the screen number.

For information about using nickname processing to pass connection identifiers to the graPHIGS API, see

Controlling the Environment with Defaults and Nicknames.

For further information about the connection identifier passed when generating GDF files, CGM files, or

IMAGE files, see The GDF Workstation, The CGM Workstation, or The IMAGE Workstation.

Description Tables in the graPHIGS API

This section contains two tables:

v The graPHIGS API Traversal State List

v Workstation View Table Data

The data types of the returned values are identified by the following codes:

 Data Type Definition

I Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is defined by enumerating the

identifiers denoting the values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) [default] t (data type) indicates a collection of data of that type. This can

be indicated in one of two ways:

v By using notation such as 3[default]R (three real numbers), which could specify something like

the x, y, and z coordinates of a three-dimensional point or RGB values

v By using a variable number such as n[default]I, which specifies a collection of n integers.

The values identified with the symbol * reflect the default value of a workstation configuration variable; that

is, this may not be the actual workstation value after the workstation is opened.

The graPHIGS API Traversal State List

 Table 2. The graPHIGS API Traversal Defaults Table

Description Data Type Default Value

Annotation height scale factor R 1.0

Annotation path

 (1=RIGHT,

 2=LEFT,

 3=UP,

 4=DOWN)

E 1=RIGHT

Chapter 1. General Information for Workstations 5

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value

Annotation Text Alignment

Horizontal

 (1=NORMAL,

 2=LEFT_ALIGN,

 3=CENTER,

 4=RIGHT_ALIGN)

E 1=NORMAL

Vertical

 (1=NORMAL,

 2=TOP,

 3=CAP,

 4=BASE,

 5=BOTTOM)

E 1=NORMAL

Annotation up vector 2[default]R 0.0, 1.0

Antialiasing identifier

 (1=NONE,

 2=PERFORM)

I 1=NONE

Back data modification matrix 3[default]3[default]R 1.0, 0.0, 0.0

0.0, 1.0, 0.0

0.0, 0.0, 1.0

Back interior color index 3[default]R See note*

Back interior color source type E VERTEX

Back specular color 3[default]R See note*

Back Surface Properties

 Ambient reflection coefficient R 1.0

 Diffuse reflection coefficient R 1.0

 Specular reflection coefficient R 1.0

 Specular reflection exponential R 0.0

 Transparency coefficient R 0.0

Character base vector 2[default]R 1.0, 0.0

Character expansion factor R 1.0

Character height R 0.01

Character line scale factor R 1.0

Character positioning mode

 (1=CONSTANT,

 2=PROPORTIONAL)

I 1=CONSTANT

Color processing mode index I 0

Character spacing R 0.0

Character up vector 2[default]R 0.0, 1.0

Class set names, number of I 0

Curve Approximation Criteria

Criteria:

 (1=WS_DEPENDENT,

 2=CONSTANT_SUBDIVISION_BETWEEN_KNOTS,

 3=VARIABLE_SUBDIVISION_BETWEEN_KNOTS)

I 1=WS_DEPENDENT

Control value R 1.0

6 The graPHIGS Programming Interface: Technical Reference

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value

Data Filtering for Data Mapping

Magnification data filtering method

 (1=SAMPLE_IN_BASE,

 2=INTERP_IN_BASE)

E 1=SAMPLE_IN_BASE

Minification data filtering method

 (1=SAMPLE_IN_BASE,

 2=INTERP_IN_BASE,

 3=SAMPLE_IN_SQUARE_MM,

 4=SAMPLE_IN_AND_INTERP_BTWN_SQUARE_MM

 5=INTERP_IN_SQUARE_MM,

 6=INTERP_IN_AND_BTWN_SQUARE_MM,

 7=SAMPLE_IN_RECT_MM,

 8=SAMPLE_IN_AND_INTERP_BTWN_RECT_MM,

 9=INTERP_IN_RECT_MM)

E 1=SAMPLE_IN_BASE

u-dimension bounding method

 (1=CLAMP,

 2=REPEAT)

E 1=CLAMP

v-dimension bounding method

 (1=CLAMP,

 2=REPEAT)

E 1=CLAMP

Data mapping method

 (-1=IMAGE_ARRAY,

 1=DM_METHOD_COLOR,

 2=SINGLE_VALUE_UNIFORM,

 4=BI_VALUE_UNIFORM)

E 1=DM_METHOD_COLOR

Data mapping table index I 0

Data modification matrix 3[default]3[default]R 1.0, 0.0, 0.0

0.0, 1.0, 0.0

0.0, 0.0, 1.0

Data Morphing

 Data morphing scale factors n[default]R {1.0}

 Data morphing scale factors, number of I 1

Default attribute source flag items:

 Polyline line type

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Polyline line width scale factor

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Polyline color

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Marker type

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Marker size scale factor

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

Chapter 1. General Information for Workstations 7

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value

 Polymarker color

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Text font

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Text precision

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Text color

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Character expansion factor

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Character spacing

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Interior style

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Interior style index

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Interior color

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Edge flag

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Edge line type

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Edge line width scale factor

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

 Edge color

 (1=BUNDLED,

 2=INDIVIDUAL)

E 2=INDIVIDUAL

Depth cue index I 0

Destination blending function

 (1=DSTBF_ZERO,

 2=DSTBF_ONE,

 3=DSTBF_SRC_ALPHA,

 4=DSTBF_ONE_MINUS_SRC_ALPHA,

 5=DSTBF_DST_ALPHA,

 6=DSTBF_ONE_MINUS_DST_ALPHA,

 7=DSTBF_DST_COLOR,

 8=DSTBF_ONE_MINUS_SRC_COLOR)

E 4=DSTBF_ONE_MINUS_SRC_ALPHA

Edge bundle table index I 1

8 The graPHIGS Programming Interface: Technical Reference

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value

Edge color 3[default]R See note*

Edge flag

 (1=OFF,

 2=ON,

 3=GEOMETRY_ONLY)

E 1=OFF

Edge line type I 1=SOLID

Edge line width scale factor R 1.0

Face distinguish mode

 (1=NONE,

 2=COLOR_SURFACE_PROPERTIES)

I 1=NONE

Face lighting method

 (1=FACE_INDEPENDENT,

 2=FACE_DEPENDENT)

E 1=FACE_INDEPENDENT

Frame buffer comparison:

 Operation

 (1=NO_OPERATION,

 2=WRITE_WHEN_EQUAL,

 3=WRITE_WHEN_NOT_EQUAL)

E 1=NO_OPERATION

 Mask I N/A

 Comparison value I N/A

Frame buffer write protect mask I 0

Geometric Text Alignment

 Horizontal

 (1=NORMAL,

 2=LEFT_ALIGN,

 3=CENTER,

 4=RIGHT_ALIGN)

E 1=NORMAL

 Vertical

 (1=NORMAL,

 2=TOP,

 3=CAP,

 4=BASE,

 5=BOTTOM)

E 1=NORMAL

Geometric text path

 (1=RIGHT,

 2=LEFT,

 3=UP,

 4=DOWN)

E 1=RIGHT

Global modeling transformations 4[default]4[default]R 1.0, 0.0, 0.0, 0.0

0.0, 1.0, 0.0, 0.0

0.0, 0.0, 1.0, 0.0

0.0, 0.0, 0.0, 1.0

Highlighting color 3[default]R See note*

Chapter 1. General Information for Workstations 9

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value

HLHSR (hidden line, hidden surface removal

identifier)

 (1=VISUALIZE_IF_NOT_HIDDEN,

 2=VISUALIZE_IF_HIDDEN,

 3=VISUALIZE_ALWAYS,

 4=NOT_VISUALIZE,

 5=FACE_DEPENDENT_VISUALIZATION,

 6=NO_UPDATE,

 7=GREATER_THAN,

 8=EQUAL_TO,

 9=LESS_THAN,

 10=NOT_EQUAL,

 11=LESS_THAN_OR_EQUAL_TO)

I 1=VISUALIZE_IF_NOT_HIDDEN

Interior bundle table index I 1

Interior color 3[default]R See note*

Interior color source type E VERTEX

Interior shading method

 (1=SHADING_NONE,

 2=SHADING_COLOR,

 3=SHADING_DATA)

E 2=SHADING_COLOR

Interior style

 (1=HOLLOW,

 2=SOLID,

 3=HATCH,

 4=PATTERN,

 5=EMPTY)

E 1=HOLLOW

Interior style index I 1

Label identifier I 0

Light color source type E VERTEX

Light Source State

 Number of light sources I 0

 List of active light sources E N/A

Lighting calculation mode

 (1=NONE,

 2=PER_AREA,

 3=PER_VERTEX)

E 1=NONE

Line type I 1=SOLID_LINE

Line width scale factor R 1.0

Local modeling transformations 4[default]4[default]R 1.0, 0.0, 0.0, 0.0

0.0, 1.0, 0.0, 0.0

0.0, 0.0, 1.0, 0.0

0.0, 0.0, 0.0, 1.0

Marker size scale factor R 1.0

Marker type I 3=ASTERISK

Modeling clipping indicator

 (1=NOCLIP,

 2=CLIP)

E 1=NOCLIP

10 The graPHIGS Programming Interface: Technical Reference

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value

Parametric surface characteristics

 (1=NONE,

 2=ISOPARAMETRIC_LINES)

E 1=NONE

Pick identifier I 0

Polygon culling

 (1=NONE,

 2=BACK,

 3=FRONT)

I 1=NONE

Polyhedron edge culling mode

 (1=NONE,

 2=BOTH_BACK,

 3=BOTH_FRONT,

 4=BOTH_BACK_OR_BOTH_FRONT,

 5=BACK_AND_FRONT,

 6=LEAST_ONE_BACK,

 7=LEAST_ONE_FRONT)

I 1=NONE

Polyline bundle table index I 1

Polyline color 3[default]R See note*

Polyline end type

 (1=FLAT,

 2=ROUND,

 3=SQUARE)

E 1=FLAT

Polyline shading method

 (1=POLYLINE_SHADING_NONE,

 2=POLYLINE_SHADING_COLOR)

E 1=POLYLINE_SHADING_NONE

Polymarker bundle table index I 1

Polymarker color 3[default]R See note*

Reflectance model

 (1=REFLECTANCE_NONE,

 2=AMB,

 3=AMB_DIFF,

 4=AMB_DIFF_SPEC)

E 1=REFLECTANCE_NONE

Source blending function

 (1=SRCBF_ZERO,

 2=SRCBF_ONE,

 3=SRCBF_SRC_ALPHA,

 4=SRCBF_ONE_MINUS_SRC_ALPHA,

 5=SRCBF_DST_ALPHA,

 6=SRCBF_ONE_MINUS_DST_ALPHA,

 7=SRCBF_DST_COLOR,

 8=SRCBF_ONE_MINUS_DST_COLOR,

 9=SRCBF_MIN_SRC_ALPHA_ONE_MINUS_DST_ALPHA)

E 3=SRCBF_SRC_ALPHA

Specular color 3[default]R See note*

Surface Approximation Criteria

 Criteria

 (1=WS_DEPENDENT,

 2=CONSTANT_SUBDIVISION_BETWEEN_KNOTS,

 3=VARIABLE_SUBDIVISION_BETWEEN_KNOTS)

I 1=WS_DEPENDENT

 Control value 2[default]R 1.0, 1.0

Surface Properties

Chapter 1. General Information for Workstations 11

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value

 Ambient reflection coefficient R 1.0

 Diffuse reflection coefficient R 1.0

 Specular reflection coefficient R 1.0

 Specular reflection exponential R 0.0

 Transparency coefficient R 0.0

Text bundle table index I 1

Text Color 3[default]R See note*

Text font I 1

Text precision

 (1=STRING_PREC,

 2=CHAR_PREC,

 3=STROKE_PREC)

E 1=STRING_PREC

Transparency coefficient R 0.0

Trimming curve approximation criteria:

 Criteria

 (1=WS_DEPENDENT,

 2=CONSTANT_SUBDIVISION_BETWEEN_KNOTS,

 3=VARIABLE_SUBDIVISION_BETWEEN_KNOTS)

I 1=WS_DEPENDENT

 Control value 3[default]R 1.0, 1.0, 1.0

Vertex Morphing

 Vertex morphing scale factors n[default]R {1.0}

 Vertex morphing scale factors, number of I 1

View index I 0

Z-buffer protect mask I 0

Note: The default color is the color value contained in entry 1 of the rendering color table.

Workstation View Table Data

When a workstation is opened with Open Workstation (GPOPWS) or Create Workstation (GPCRWS), a

Workstation State List (WSL) is created. The WSL is initialized from information in the actual Workstation

Description Table (WDT) that is modified to reflect the capabilities of the specific workstation to be used.

The workstation transformation values and the view table in the WSL are initialized to the following values.

The right-hand column lists the appropriate inquiry subroutine and parameter.

 Table 3. WSL View Parameters at Initialization

Description Data Type Default Value Inquiry

 Workstation window 6[default]R 0.0, 1.0, 0.0,

1.0, 0.0, 1.0

 Workstation viewport 6[default]R 0.0, WVX, 0.0,

WVY, 0.0, WVZ

Note: For a square display surface, WVX, WVY, and WVZ are the maximum device coordinate values in the x, y,

and z directions. For a non-square display surface, the largest square portion of the display surface in the lower left

corner is used.

View Table Entry Values

12 The graPHIGS Programming Interface: Technical Reference

Table 3. WSL View Parameters at Initialization (continued)

Description Data Type Default Value Inquiry

 Viewing transformation matrix 16[default]R 1.0, 0.0, 0.0, 0.0

0.0, 1.0, 0.0, 0.0

0.0, 0.0, 1.0, 0.0

0.0, 0.0, 0.0, 1.0

GPQCVR

[Group 18, 19]

 View Mapping Matrix 4[default]4[default]R 1.0, 0.0, 0.0, 0.0

0.0, 1.0, 0.0, 0.0

0.0, 0.0, 1.0, 0.0

0.0, 0.0, 0.0, 1.0

GPQCVR

[Group 22, 23]

 Window 4[default]R -1.0, 1.0, -1.0,

1.0

GPQCVR

[Group 16, 17]

 Viewport 6[default]R 0.0, 1.0, 0.0,

1.0, 0.0, 1.0

GPQCVR

[Group 14, 15]

 Projection reference point 3[default]R 0.0, 0.0, 1.0 GPQCVR

[Group 16, 17]

 View plane distance R 0.0 GPQCVR

[Group 16, 17]

 Near plane distance R 1.0 GPQCVR

[Group 16, 17]

 Far plane distance R 0.0 GPQCVR

[Group 16, 17]

 Projection type

 (1=PARALLEL,

 2=PERSPECTIVE)

E 1=PARALLEL

 Window clipping indicator

 (1=OFF,

 1=ON)

E 2=ON GPQCVR

[Group 1]

 Far clipping indicator

 (1=OFF,

 2=ON)

E 2=ON GPQCVR

[Group 3]

 Near clipping indicator

 (1=OFF,

 2=ON)

E 2=ON GPQCVR

[Group 2]

 Shielding color type

 (1=INDEXED,

 2=DIRECT)

E 1=INDEXED GPQCVR

[Group 3]

 Shielding color I or 3[default]R 0 GPQCVR

[Group 5]

 Shielding indicator

 (1=OFF,

 2=ON)

E 1=OFF GPQCVR

[Group 4]

 View border color type

 (1=INDEXED,

 2=DIRECT)

E 1=INDEXED GPQCVR

[Group 7]

 View border color I or 3[default]R 1 GPQCVR

[Group 7]

 View border indicator

 (1=OFF,

 2=ON)

E 1=OFF GPQCVR

[Group 6]

View Active Flag for Input

Chapter 1. General Information for Workstations 13

Table 3. WSL View Parameters at Initialization (continued)

Description Data Type Default Value Inquiry

 For view 0

 (1=INACTIVE,

 2=ACTIVE)

E 1=ACTIVE GPQCVR

[Group 20]

 For all other views

 (1=INACTIVE,

 2=ACTIVE)

E 1=INACTIVE GPQCVR

[Group 20]

View Active Flag for Output

 For view 0

 (1=INACTIVE,

 2=ACTIVE)

E 2=ACTIVE GPQCVR

[Group 21]

 For all other views

 (1=INACTIVE,

 2=ACTIVE)

E 1=INACTIVE GPQCVR

[Group 21]

Temporary view indicator

 (1=OFF,

 2=ON)

E 1=OFF GPQCVR

[Group 9]

HLHSR (hidden line, hidden surface

removal) mode

 (1=OFF,

 2=ON_THE_FLY)

E 1=OFF GPQCVR

[Group 10]

Transparency mode

 (1=OFF,

 2=PARTIAL_TRANSPARENT,

 3=BLEND,

 4=BLEND_ALL)

E 1=OFF GPQCVR

[Group 11]

Antialiasing mode

 (1=OFF,

 2=SUBPIXEL_ON_THE_FLY,

 3=NON_SUBPIXEL_ON_THE_FLY)

E 1=OFF GPQCVR

[Group 24]

Initial color processing index I 0 GPQCVR

[Group 12]

Initial frame buffer write protect mask I 0 GPQCVR

[Group 13]

Shield alpha value I 255 GPQCVR

[Group 25]

14 The graPHIGS Programming Interface: Technical Reference

Chapter 2. Supported Workstations

This chapter contains general information about the workstations supported by the graPHIGS API. It

describes functions and limitations of particular workstations when running graPHIGS API applications.

Consider these when writing your application programs.

You should obtain and use the latest level of microcode for your workstation when applicable. This ensures

that you have fixes for microcode problems and possible performance enhancements. Ask the person

responsible for installing the graPHIGS API on your system to refer to the Program Directory supplied with

the latest release for information about the latest microcode release(s).

The X Workstation Family

The X Workstation represents the family of X workstations supported by the graPHIGS API.

The graPHIGS API in the X11 Windowing Environment

This section discusses the interaction between a graPHIGS API application and the X Version 11 Window

System. It is not within the scope of this book to explain X or graPHIGS API concepts. Background for the

standard X and graPHIGS API terminology in this chapter may be found in The graPHIGS Programming

Interface: Understanding Concepts.

The X Window System supports multiple applications running in overlapping and hidden windows on one

or more screens. X applications, called clients, share common resources such as the keyboard, mouse,

display surface, and hardware colormaps. The functions provided in X for window creation, window

deletion, window re-sizing, colormap allocation, and event handling make this environment very different

from a user running a single full-screen application.

However, X is but one of many workstations supported by the graPHIGS API. This implies that a

graPHIGS API application does not need to recognize that it is running in an X window, and that special

support is not required to run under X. A graPHIGS API application is not developed specifically for the X

environment, and is expected to perform in an X window as if it were running full-screen.

All processing that is unique to the X environment will be handled by the graPHIGS API. For example,

when an overlapping window is moved, the application must maintain the contents of the window beneath.

X generates events in order to notify the client that the window must be re-drawn. It is the responsibility of

the graPHIGS API to manage all X resources and to ensure that the window contents accurately reflect

the graphic contents. When the user changes the size of the window, the graPHIGS API manages the

graphics and echo areas according to the window mapping method. (Refer to Window Mapping and

Resize for more information). Such events are handled by the graPHIGS API on behalf of the application.

So in fact, the graPHIGS API ensures that upward compatibility will be maintained and existing

applications will run unchanged.

Graphic output for a logical graPHIGS API workstation will be displayed in one corresponding window. For

example, if an application opens four X workstations, four windows will be created with a workstation

associated to each window.

For the graPHIGS API to create X resources such as windows, it must communicate with an X server by

opening a connection to the server. The process by which the graPHIGS API chooses the server is

described in Opening the X Workstation. This connection is private and the application cannot access the

connection. This allows an application to access both graPHIGS API and X11 functionality without

confusion; it can mix graPHIGS API calls with X calls to use both the advanced graphic capabilities

provided by the graPHIGS API and the user interface routines provided by X11 toolkits. Having opened a

workstation, an application can access X resources by opening its own connection to a server. An

application that is making X calls has access to all X windows on the screen because X has very

© Copyright IBM Corp. 1994, 2002 15

generous rules for sharing resources. An application could draw into the same window that the graPHIGS

API accesses. However, this is strongly discouraged because it would be impossible to synchronize

updates. An application mixing X subroutine calls with graPHIGS API subroutine calls should not use X to

access the graPHIGS API window.

Both an application coding to the X interface and the graPHIGS API should behave as well-behaved X

clients. The graPHIGS API has been designed to minimize its use of server resources.

Since both the graPHIGS API application and the graPHIGS API are considered to be a single X client, it

is necessary to understand how the API creates a window, maps the graphics to a window, and handles X

events. These topics will be covered in detail in the following sections:

Temporary Views

Temporary views are supported with the following limitations:

Direct Access Capabilities on the RS/6000:

v To perform the view drawing optimizations through use of temporary views:

– The graPHIGS API must obtain the system resources needed to save the graphic data under a

temporary view.

– The graphic data under a temporary view must not be changed.

Otherwise the temporary view is treated as a normal view and the most efficient uses of the temporary

view are not performed.

v The graphic data under a temporary view is preserved across one workstation update only.

View Mapping

If the projection reference point is between the near and far clip planes, the projection type is changed to

PARALLEL and an error is generated.

Supported Hardware for the X Workstation

In general, the graPHIGS API is intended to operate with an application on an IBM workstation. The

graphics generated by the graPHIGS API, when using the X workstation, may be displayed on any

equipment that supports a complete X server (X Version 11, Release 4 or later for the RS/6000 platform).

The graPHIGS API is designed to exploit the distributed, network transparent, and device independent

qualities of X. Because of these capabilities, the user may run a graPHIGS API application on the same

machine as the X server or may run a graPHIGS API application on another machine that is connected to

the machine on which the X server is being used for display.

IBM does not explicitly support the use of non-IBM equipment running an X server to display the output of

the graPHIGS API. However, if the X server supports a full implementation of the X protocol, then there

should be little difficulty in using this equipment in this way. The graPHIGS API requires that the target X

server support any of the StaticGray, GrayScale, StaticColor, or PseudoColor visual classes. The

DirectColor and TrueColor visual classes cannot be used for the X workstation type in XLIB mode.

On some IBM equipment, the graPHIGS API supports advanced rendering capabilities which are available

through a method called Direct Window Access (DWA). These capabilities are assisted through hardware

on the X workstation when in DWA mode. For a list of these DWA capabilities, see Additional Capabilities

Available on RS/6000. DWA capabilities are only available when the graPHIGS API nucleus runs on the

same machine as the X server. In order to use the DWA capabilities on a remote machine, the application

must connect to a remote graPHIGS API nucleus running on that remote machine.

Brief listings of configurations supporting the X workstation for the graPHIGS API follow:

16 The graPHIGS Programming Interface: Technical Reference

Table 4. Configurations Supporting X Workstation for graPHIGS API Running on the RS/6000

DISPLAY ADAPTER FRAME BUFFER

DEPTH

BEST

AVAILABLE

BUFFER

CONFIGURATION

(Single or

Double)¹

SUPPORTED X

WORKSTATION

CAPABILITIES

VISUAL CLASS

POWER GXT6500P 24 bit Double DWA/XSOFT TrueColor

24 bit Double DWA/XSOFT DirectColor

8 bit Single XSOFT/XLIB PseudoColor

POWER GXT4500P 24 bit Double DWA/XSOFT TrueColor

24 bit Double DWA/XSOFT DirectColor

8 bit Single XSOFT/XLIB PseudoColor

POWER GXT6000P 24 bit Double DWA / XSOFT TrueColor

24 bit Double DWA / XSOFT DirectColor

8 bit Single XSOFT / XLIB PseudoColor

POWER GXT4000P 24 bit Double DWA / XSOFT TrueColor

24 bit Double DWA / XSOFT DirectColor

8 bit Single XSOFT / XLIB PseudoColor

POWER GXT300P 24 bit Single XSOFT TrueColor

24 bit Single XSOFT DirectColor

8 bit Single XSOFT / XLIB PseudoColor

POWER GXT2000P 24 bit Double DWA / XSOFT TrueColor

24 bit Double DWA / XSOFT DirectColor

8 bit Single XSOFT / XLIB PseudoColor

POWER GXT3000P 24 bit Double DWA / XSOFT TrueColor

24 bit Double DWA / XSOFT DirectColor

8 bit Single XSOFT / XLIB PseudoColor

POWER GXT1000 and

POWER GXT800P

24 bit Double DWA / XSOFT TrueColor

24 bit Double DWA / XSOFT DirectColor

8 bit Single XSOFT / XLIB PseudoColor

POWER GXT550P 24 bit Double DWA / XSOFT TrueColor

24 bit Double DWA / XSOFT DirectColor

8 bit Double DWA / XSOFT / XLIB PseudoColor

POWER GXT500P 24 bit Single XSOFT TrueColor

24 bit Single XSOFT DirectColor

8 bit Double DWA / XSOFT / XLIB PseudoColor

12 bit Double DWA DirectColor

POWER Gt4 (24 bit),

POWER Gt4x (24 bit),

and POWER Gt4xi (24

bit)

24 bit Double DWA / XSOFT DirectColor

8 bit Single XSOFT / XLIB PseudoColor

Chapter 2. Supported Workstations 17

Table 4. Configurations Supporting X Workstation for graPHIGS API Running on the RS/6000 (continued)

DISPLAY ADAPTER FRAME BUFFER

DEPTH

BEST

AVAILABLE

BUFFER

CONFIGURATION

(Single or

Double)¹

SUPPORTED X

WORKSTATION

CAPABILITIES

VISUAL CLASS

POWER GXT255P 8 bit Double DWA / XSOFT / XLIB PseudoColor

24 bit Single XSOFT TrueColor

24 bit Single XSOFT DirectColor

POWER GXT250P 8 bit Double2 DWA / XSOFT / XLIB PseudoColor

8 bit Single XSOFT / XLIB PseudoColor

POWER GXT500D 24 bit Double DWA / XSOFT TrueColor

24 bit Double DWA / XSOFT DirectColor

8 bit Double DWA / XSOFT / XLIB PseudoColor

POWER GXT500 24 bit Single DWA / XSOFT TrueColor

24 bit Single DWA / XSOFT DirectColor

8 bit Double DWA / XSOFT / XLIB PseudoColor

12 bit Double DWA DirectColor

POWER Gt1x 8 bit Single XSOFT / XLIB PseudoColor

POWER GXT100 (8 bit) 8 bit Single XSOFT / XLIB PseudoColor

POWER Gt4x (8 bit),

POWER Gt4xi (8 bit)

8 bit Double DWA / XSOFT PseudoColor

8 bit Single XSOFT / XLIB PseudoColor

POWER Gt4e (8 bit) 8 bit Double DWA / XSOFT PseudoColor

8 bit Single XSOFT / XLIB PseudoColor

POWER Gt3i 8 bit Single XSOFT / XLIB PseudoColor

POWER GTO (24 bit) 24 bit Double DWA / XSOFT DirectColor

8 bit Single XSOFT / XLIB PseudoColor

POWER GTO (8 bit) 8 bit Double DWA / XSOFT PseudoColor

8 bit Single XSOFT / XLIB PseudoColor

Color Graphics Display

Adapter

8 bit Single XSOFT / XLIB PseudoColor

GrayScale Graphics

Display Adapter

4 bit Single XLIB GrayScale

Note:

1 DWA capabilities support the double buffer configuration only. XSOFT and XLIB capabilities support the

single buffer configuration only.

2 Maximum screen size is 1024x768 for DWA capabilities.

Opening the X Workstation

When a graPHIGS API application wants to open a logical workstation, it must specify a workstation type

and connection identifier. The workstation type for the X workstation support must be ’X’ and the

connection ID can either be ’*’ or the standard X windows server specification ’host:server.screen’. If you

specify an asterisk, then the graPHIGS API connects to the server listed in the operating system variable

DISPLAY.

18 The graPHIGS Programming Interface: Technical Reference

The value of the operating system variable LANG determines the graPHIGS API primary character set.

v If the LANG variable is set to:

– ja_JP

– Ja_JP

– En_JP or

– Jp_JP

then the character set identifier 6 (Katakana) is used as the primary character set.

v If the LANG variable is set to:

– ko_KR

then the character set identifier 9 (single-byte Korean) is used as the primary character set.

v If the LANG variable is set to:

– zh_TW or

– zh_CN

then the character set identifier 8 (Multi-Language) is used as the primary character set.

v If the LANG variable is

– any lower case letter other than ″j″, ″k″, or ″z″,

then the character set identifier 10 (ISO 8859-1) is used.

v If the LANG variable is set to any value other than those listed above, then the character set identifier 8

(Multi-Language) is used as the primary character set.

To check the operating system variable LANG, enter the ″echo $LANG″ command. To set the operating

system variable LANG, for example, to use Katakana (character set 6) as the primary character set

identifier, enter the commands ″LANG=ja_JP″ and ″export LANG″.

The workstation type and the connection identifier can be specified through the defaults processing (EDF

file or ADIB) and as parameters on the Open Workstation (GPOPWS) or the Create Workstation

(GPCRWS) subroutines. The following examples illustrate two ways of specifying the connection identifier

and workstation type:

1. Sample line from the External Defaults File (EDF) called PROFILE

 AFMMNICK TOWSTYPE=X,

 TOCONNID=unix:0

2. Sample ’C’ language call to Create the Workstation:

 GPCRWS(wsid, ncid,1,"*","X ",0) ;

v The ncid should be 1 if you do not issue the Connect to Nucleus (GPCNC) subroutine call.

v The third parameter is the length (1) of the connection ID (″*″).

v The fourth parameter is the workstation type and must be 8 characters.

Note: See the description under Additional notes for DWA Adapters for more information on opening

graPHIGS Direct Window Access(DWA) Workstations.

Window Creation

The window associated with a workstation can be created by either the application or the graPHIGS API.

This has been designed to provide maximum flexibility. The application can create the window and pass

the window identifier to the API via the XWINDID PROCOPT. By default, the graPHIGS API will create the

window as a child of the root window (top-level window), using the same visual, depth and screen as the

root window. It will not create the window if the user specifies the XWINDID PROCOPT.

If the API creates the window on behalf of the application, the user may specify some information about

the window that will define the initial position, initial size and window appearance. This information is

Chapter 2. Supported Workstations 19

communicated to X through two mechanisms, the XCreateWindow subroutine call and properties. The

following will explain how the graPHIGS API will use these mechanisms to create a window:

Properties

X allows the graPHIGS API to associate information, called properties, with a window that other clients can

access. Properties that are processed by a window manager are called hints. A hint is appropriately

named because a window manager has the authority to interpret or ignore any property. This is to say that

it impossible to state exactly how the window will ultimately appear because each window manager will

interpret hints differently. The graPHIGS API has chosen a standard set of properties to define on a

window. These properties can be used by a window manager to define the initial position, initial size,

window title, icon name, icon bitmap, minimum aspect ratio, maximum aspect ratio, window border color

and the window border width.

The graPHIGS API will define these properties based on default information provided by the user. The

graPHIGS API will use the standard methods for collecting user preferences, namely the .Xdefaults file.

The user can specify a string, which is usually the application name, via a graPHIGS API PROCOPT called

XNAME (see XNAME). The graPHIGS API will use this string to identify defaults specified in the .Xdefaults

file. Table 5 describes the properties that the user can specify and the graPHIGS API system default action

if the user has not specified the attribute.

 Table 5. Window Creation Defaults for .Xdefaults File

Description Format graPHIGS API Default Action

Initial Window Geometry name.geometry: WidthxHeight+(-
)X+(-)Y

See discussion below

Minimum Window Size name.minSize: WidthxHeight 100x100

Window Title name.title: MyTitle Blank Title

Icon Name name.MyIcon: MyIcon Default to the Window Name

Icon Bitmap Filename name.iconBitmap: BitmapFilename No icon bitmap

Minimum Aspect Ratio name.aspectMinimum: WidthxHeight None specified

Maximum Aspect Ratio name.aspectMaximum: WidthxHeight None specified

Window Border color (Pixel Value) name.borderColor: color Zero

Window Border width name.borderWidth: width Zero

Note: The value of the XNAME PROCOPT(see XNAME) is substituted here as name

Each of the defaults may be prefixed by a name or a wildcard. This name can be passed in via the

graPHIGS API XNAME PROCOPT (see XNAME), otherwise, the graPHIGS API will default the name to

″graPHIGS″.

If the user does not specify the initial window geometry, the graPHIGS API will create a window half the

width of the screen and with the same aspect ratio. This is to insure that the window is large enough for

the user to easily locate. Your window manager may prompt you to size or move the initial window if the

graPHIGS API specifies the initial window geometry. The values that the graPHIGS API supplies will be

used for the outline of the rubber band box that the window manager will display.

The window border color is specified as a pixel value and not as a named color. This is due to the fact

that the graPHIGS API may associate a colormap to the window and the named color will not necessarily

correspond to the pixel value.

A sample .Xdefaults file with the above defaults is supplied when you install the graPHIGS API diskettes.

For the graPHIGS API to find your defaults, you will have to place the default information in your

.Xdefaults file in your $HOME directory.

20 The graPHIGS Programming Interface: Technical Reference

Converting Coordinates

The Convert Coordinate Values (GPCCV) subroutine can be used by the application to convert coordinate

units among the NPC, DC, and window units (WU) ranges.

Inquiring Window Size

The Inquire Mapped Display Surface Size (GPQMDS) subroutine returns the size of the area that displays

the DC range. In the 1=MAPPED method, the display is constrained to an area with the same aspect ratio as

the display surface1. In the 2=DIRECT method, the value returned is the current size of the window,

constrained to the same area as the root window. The application can use this value as the current size of

the displayable part of DC.

Note:

1 This constraint disappears when you use the XWINDASP PROCOPT to alter the aspect ratio of

the root window.

XCreateWindow

Information derived from the .Xdefaults file will be used to change some of the X window attributes via the

XCreateWindow subroutine call. The .Xdefaults information is only processed when the window is created

by the graPHIGS API and therefore the corresponding window attributes will only be changed at this time.

Window attributes are also changed by the graPHIGS API in order to process events and color. The

following table briefly illustrates which attributes will be used by the graPHIGS API. The column on the left

applies when the API creates the window and the column on the right applies when the application creates

the window.

 Table 6. Attribute Table

Attribute graPHIGS API Application

1) background_pixmap *

2) background_pixel *

3) border_pixmap *

4) border_pixel *

5) bit_gravity + +

6) win_gravity

7) backing_store + +

8) backing_planes + +

9) backing_pixel + +

10) override_redirect

11) save_under + +

12) event_mask * *

13) do_not_propogate

14) colormap * *

1

15) cursor * *

Key:

* = the graPHIGS API will change this attribute

+ = the graPHIGS API may use this attribute in the future

Note:

1 This is dependent on the XNOCLRMP PROCOPT (see XNOCLRMP (Do Not Create an X Color Map)).

When the graPHIGS API has created and associated a colormap to the window, the API will require that a

window manager be installed. This ensures that the graPHIGS API colormap will be installed by the

window manager when the pointing icon is in the graPHIGS API window. The client should avoid grabbing

the input focus and installing the colormap and allow the window manager to perform these actions.

Chapter 2. Supported Workstations 21

Additional Capabilities Available on RS/6000

Under specific circumstances described in the list below, the graPHIGS API provides access to graphics

processor capabilities not normally available through the X Protocol. These additional capabilities allow

exploitation of hardware features of a graphics processor. The availability of these capabilities is indicated

in the actual WDT of the workstation. Specific capabilities are described in Workstation Description Tables

as direct access features of the X workstation type.

See Table 4. Configuration supporting X Workstation for graPHIGS API Running on the RS/6000 to

determine which adapters support DWA mode. To obtain direct access to any of these adapters, the

following conditions are necessary:

v The application connects to a graPHIGS API nucleus running on a RS/6000.

v The X workstation connection id specifies an X server running on the same physical RS/6000 as the

graPHIGS API nucleus to which the GPOPWS or GPCRWS procedure is directed.

PROCOPTs Supported by the X Workstation

XWINDID

The application can pass the graPHIGS API a window ID and the API will use this for the workstation

display window. If the application creates the window, then it cannot change the window ID without closing

the workstation and re-opening the workstation with a new ID. It is the responsibility of the application to

map the window before opening the workstation.

A potential problem with an application creating its own window is that it cannot know for certain whether

the graPHIGS nucleus on which the X workstation will be created is local to the X server where the

window was created. For example, if the application intended to open an XDWA workstation but the

application’s window was created on an X server that is remote to the graPHIGS nucleus, then an XDWA

workstation will fail during its initialization. This situation can happen readily if the graPHIGS nucleus that

is connected to has been changed via a TONUC or DEFNUC default in an EDF. The application could use

the GPQNCE (Inquire Nucleus Environment) subroutine to get the Internet address and the hostname of

the system that the nucleus is running in order to avoid this situation. Also, you can see the GPES

subroutine (escape 1018) for information on getting a list of supported visuals in order to guarantee that

the application’s window will be usable by the graPHIGS nucleus.

It is important to remember when defining your window that the client should avoid installing the colormap,

and allow the window manager to perform these actions. The window manager will install the colormap

automatically for top level windows. For descendents of the top level windows which have different

colormaps, there is no current convention as to how their colormaps will be made active. Typically,

descendents of a top level window will share the colormap associated with the top level window. See

XWINDID (X Window Identifier) for additional information.

The following code illustrates the steps necessary to create a window and pass the window identifier to the

graPHIGS API:

22 The graPHIGS Programming Interface: Technical Reference

/* Declare the defaults data structure */

struct

{

 int adib_len ;

 struct

 {

 int len ;

 int code ; /* code for following nicknames */

 /* nickname - must be in adib */

 char fromws[8] ;

 char fromconn[8] ;

 char tows[8] ;

 char toconn[8] ;

 /* PROCOPT for window id*/

 struct

 {

 int len ;

 int code ;

 int window_id ;

 } ads1 ;

 } nicknames ;

} adib ;

 /* Open a connection to the server */

 if (!(dpy = XOpenDisplay(NULL)))

 {

 printf("Cannot open display \n");

 exit(0);

 }

 /* Create an X window using a simple version of XCreateWindow */

 win = XCreateSimpleWindow(dpy,

 RootWindow(dpy,0),

 DisplayWidth(dpy,0)/4,

 DisplayHeight(dpy,0)/4,

 DisplayWidth(dpy,0)/2,

 DisplayHeight(dpy,0)/2,

 0,0,0);

 /* Map the window */

 XMapWindow(dpy, win);

 XSync(dpy,FALSE);

 /* initialize the adib */

 adib.adib_len = sizeof(adib) ;

 adib.nicknames.code = 2001 ;

 adib.nicknames.len = sizeof(adib.nicknames) ;

 strncpy(adib.nicknames.fromws," ",8) ;

 strncpy(adib.nicknames.fromconn," ",8) ;

 strncpy(adib.nicknames.tows ,"X ",8) ;

 strncpy(adib.nicknames.toconn ,"* ",8) ;

 adib.nicknames.ads1.len = sizeof(adib.nicknames.ads1) ;

 adib.nicknames.ads1.code = 25 ;

 adib.nicknames.ads1.window_id = win ;

 /* pass the defaults to the graPHIGS API */

GPOPPH(erfile,&adib) ;

XNAME

This name will be used to resolve the defaults in the .Xdefaults file. The following example illustrates the

format of XNAME and the corresponding format of the defaults in the .Xdefaults file:

Chapter 2. Supported Workstations 23

AFMMNICK TOWSTYPE=X,

 TOCONNID=unix:0,

 PROCOPT=((XNAME,MyName))

.Xdefaults file in your $HOME directory

 MyName.geometry: 500x500+0+0

 MyName.title : MyTitle

If the XNAME PROCOPT (see XNAME (X Default String)) is not specified, then the graPHIGS API will use the

string ″graPHIGS″ to resolve the defaults. The .Xdefaults file would look like the following:

 graPHIGS.geometry: 500x500+0+0

 graPHIGS.title : MyTitle

XNOCLRMP

This option is only processed by the graPHIGS API if the application has also specified the XWINDID

PROCOPT (see XWINDID (X Window Identifier)). The API will not create a colormap if this PROCOPT has been

defined. This implies that the application cannot access the colormap via the graPHIGS API. The API will

initialize the display colormap as non-modifiable by the application. This allows the application to have full

control over the colormap without graPHIGS API intervention. Refer to Interaction of X and graPHIGS API

Color Resources and XNOCLRMP (Do Not Create an X Color Map) for more detailed information.

XWINDASP

When the workstation is created, the graPHIGS API X-Windows device driver establishes the display

surface size in the Workstation Description Table (WDT). The graPHIGS API PROCOPT XWINDASP (see

XWINDASP (Window Aspect Ratio)) is provided to allow the application or user to specify the aspect ratio

of the display surface that is mapped to the window. If the window already exists (identified using the

XWINDID PROCOPT (see XWINDASP (Window Aspect Ratio)), then the graPHIGS API X-Windows device

driver uses the largest subarea of the window that has the aspect ratio specified in the XWINDASP PROCOPT.

If the window does not exist, then a window is created, using hints in the X defaults file (or workstation

defaults if the X defaults file hints do not exist). The graPHIGS API X-Windows device driver uses the

largest subarea of the created window that has the aspect ratio specified in the XWINDASP PROCOPT. If the

XWINDASP PROCOPT is not specified, then the aspect ratio of the root window is used. Refer to Controlling

the Environment with Defaults and Nicknames for the format of the PROCOPT in the External Defaults File

(EDF) or the Applications Interface Defaults Block (ADIB).

Other Supported PROCOPTs

Refer to Controlling the Environment with Defaults and Nicknames for information relating to the other

supported PROCOPTS.

X Events

SYNCPROC mode

On the operating system, the graPHIGS API has been using an IBM extension to Xlib (X Asynchronous

Event Handling) in order to receive X events. Using this extension, the graPHIGS API defines an event

handler and receives X events (that pertain to the windows for any graPHIGS X workstations that are

open) via an X signal handler. This technique allows the graPHIGS X workstations to handle events

regardless of whether the application process is executing graPHIGS API code or not.

Unfortunately, the use of this asynchronous event extension has caused problems for some graPHIGS

applications. Because of these problems, another method of handling X events was needed, one which

used a synchronous method to receive X events. To use this method, a graPHIGS application has to:

v Turn on the graPHIGS SYNCPROC default (see Controlling the Environment with Defaults and

Nicknames for more information on using graPHIGS defaults).

24 The graPHIGS Programming Interface: Technical Reference

v Call GPQSID (Inquire the list of Socket Identifiers) to get a list of socket identifiers currently used by the

graPHIGS API. This routine should be called every time a graPHIGS resource (for example, a

graPHIGS nucleus or any nucleus resource) is created or destroyed.

v The socket identifiers have to be used by a routine that will tell the application when one or more of the

sockets is active. The XtAppAddInput subroutine is one way of giving the X Toolkit the socket

information (along with a callback subroutine) so that an XtAppPending subroutine (or an

XtAppMainLoop subroutine) could be used to check on the sockets. The application could also set the

socket identifiers into a read mask and then use a select subroutine to wait for one or more of the

sockets to become active. The method used to discover whether one or more of the sockets is active

depends on the application being used.

v When one or more of the sockets is active, then the GPRDEV (Redrive Events) subroutine must be

called so that the graPHIGS API can handle the events.

v GPRDEV should also be called when the application uses graPHIGS workstation subroutines that cause

an update to the graPHIGS workstation window.

v If the application uses graPHIGS events, then it must continue to either use an event handler or call

GPAWEV (Await Event) to retrieve these graPHIGS events.

Examples of running with the graPHIGS SYNCPROC mode can be found in the following sample

programs:

v /usr/lpp/graPHIGS/samples/samp/sampc.c

v /usr/lpp/graPHIGS/samples/widgets/lib/gPWorkstation.c and

v /usr/lpp/graPHIGS/samples/widgets/samples/viewers/viewers.c

Unfortunately, using a synchronous event handling method is complicated and depends heavily on the

design of the graPHIGS application. Also, there are cases where using synchronous event handling cannot

work without code changes (for example, when input devices are used in request mode).

For this reason, many graPHIGS applications would not want to use this method and, in general, most

applications either handle all events themselves (which they can do if the applications create their own X

windows and pass the window identifiers in a procopt in the Create Workstation (GPCRWS) subroutine or

the Open graPHIGS (GPOPPH) subroutine and they do not use graPHIGS input devices), or the

applications let the graPHIGS workstations handle the X events.

In the AIX 4.3, the default Xlib subroutine libraries moved from X11R5 to X11R6, and the Asynchronous X

Event Handling extension which exists in X11R5 on the operating system was not ported to X11R6. Thus,

the graPHIGS API, by default, must handle X events synchronously. The graPHIGS workstations cannot

use a signal handler to handle X events because the X11R6 libraries are not reentrant. A separate thread

cannot be used to handle X events because most applications are not linked such that the pthreads library

can be used. So, to allow graPHIGS applications to run without modification when using X11R6, the

graPHIGS shell creates a separate process that contains the graPHIGS nucleus: a graPHIGS child

nucleus. See Advanced Concepts for more information about the concepts of the graPHIGS shell and

nucleus.

With the graPHIGS nucleus in a separate process, the graPHIGS workstations are readily able to monitor

their X display connections for X events. graPHIGS applications that are using the SYNCPROC default will

continue to have the shell and nucleus in the same process (since they are already handling X events in a

synchronous manner).

Most graPHIGS applications should not be affected by the use of the graPHIGS child nucleus. However,

some applications may see performance problems— especially applications that use a lot of graPHIGS

inquiry subroutines. This is due to the overhead involved in process context swapping that occurs when

switching between the graPHIGS shell and the graPHIGS nucleus. If a graPHIGS application finds that it

has a performance problem when running in X11R6 and the application does not use the SYNCPROC

default, as long as the application is not dependent on any X11R6 function (for example, if the application

Chapter 2. Supported Workstations 25

was created on an earlier version of the operating system and was not rewritten to make use of new

functionality of X11R6), then the application can run with the X11R5 libraries and the graPHIGS API will

run as in previous releases.

To use the X11R5 libraries, the operating system variable LIBPATH must be set up to point to the

/usr/lpp/X11/R5 directory before it points to /usr/lib or /lib. For example, using a ksh, the command to set

up the LIBPATH would be:

 export LIBPATH=/usr/lpp/X11/R5:$LIBPATH

If the application sets up an implicit LIBPATH (that is, a path specified when using a load subroutine), then

it must make sure to have /usr/lpp/X11/R5 in the path before /usr/lib or /lib.

Window Deletion

Many current window managers provide a means for the end-user to ″close″ or delete a window (via a

pull-down menu, a special key sequence, or a similar method). The action that a window manager takes in

this case is specific to that window manager. Often, the default case is for a window manager to issue

XKillClient(), which simply closes the connection to the X Windows display. The client receives an X I/O

Error and is expected to terminate immediately. However, this is unacceptable for an application that may

have resources open or active that should be closed or saved.

The graPHIGS API is notified of the window deletion via the WM_DELETE_WINDOW protocol as defined by the

X11.4 ICCCM. The application may request a WINDOW_DELETE notification event (107) through the

WINDOW_DELETE_NOTIFY escape (1012).

There are three ways in which the application can interact with the WINDOW_DELETE function:

v The application enables the event

v The application disables (or does not enable) the event (the default case)

v The application uses the XWINDID PROCOPT (see XWINDID (X Window Identifier)).

The Application Enables the Event

If an application enables the event through the use of the escape call, the graPHIGS API puts a new event

on the event queue when the end user initiates a window close (via some window manager specific

action). This event is WINDOW_DELETE (107). The graPHIGS API takes no other actions. If the application

chooses to ignore the event, the window stays on the screen, and normal processing may continue. The

intent, however, is to allow the application to conduct some ″close down″ confirmation dialogue with the

end user. The application may then, at its option, close the workstation or close graPHIGS API.

The Application Disables the Event

With this default case, or when the application explicitly disables the event, the graPHIGS API generates

an error when the end user initiates a window close. The error number is 930, message number 2045. At

this point, the graPHIGS API also unmaps (removes) the window.

The application may define an error handler to trap this error and then somehow notify the mainline

application code that the window has gone away. In this way, the application may at least do some ″close

down″ of its own.

The Application Uses the XWINDID PROCOPT

The method by which a client of an X window receives the WM_DELETE_WINDOW message is to request it via

XSetVMProtocols. When an application uses the XWINDID PROCOPT (see XWINDID (X Window Identifier)),

the graPHIGS API nucleus is not the client of the window and is unable to request the VM_DELETE_WINDOW

protocol messages. In this case, the application should enable the WM_DELETE_WINDOW protocol to avoid

having the window manager issue XKillClient on the window. If the application chooses to not enable the

WM_DELETE_WINDOW protocol itself, then the results are unpredictable, and an abend or a hang could occur.

The following sample code illustrates how an application may enable the WM_DELETE_WINDOW protocol:

26 The graPHIGS Programming Interface: Technical Reference

int npcol;

Status xrc;

Atom *newpcols,*pcols;

int i;

/*--*/

/* Enable Delete_Window window manager function */

/*--*/

 if ((wmproto =

 XInternAtom(dpy,

"WM_PROTOCOLS",True))

 == None)

 goto DW_SKIP ;

 if ((wm_delwin =

 XInternAtom(dpy,

"WM_DELETE_WINDOW",True))

 == None)

 goto DW_SKIP ;

 /* Both atoms exist at the server, continue... */

 npcol = 0;

 if (XGetWMProtocols(dpy,win,&pcols,&npcol))

 /* non-zero return code ==> call failed */

 /* ...just skip... */

 goto DW_SKIP ;

 /* scan the list of protocols -- see if WM_DELETE_WINDOW */

 /* is already there */

 for (i = 0; i < npcol; i++)

 if (pcols[i] == wm_delwin)

 break;

 /* if already there, just skip */

 if (i < npcol) goto DW_FREE ;

 /* Allocate storage for old list plus one more */

 newpcols = (Atom *)

 malloc((npcol+1)*sizeof(Atom)) ;

 if (newpcols == (Atom *)0)

 {

 printf(

"malloc failed!\n");

/* Output error message */

 goto DW_FREE ;

 }

 /* if there was an old list, copy it in */

 if (npcol) memcpy(newpcols,pcols, npcol * sizeof(Atom));

 /* Append WM_DELETE_WINDOW protocol atom to list */

 newpcols[npcol] = wm_delwin;

 /* Set new list of protocols for this window */

 XSetWMProtocols(dpy,win,newpcols,npcol + 1);

 free(newpcols);

DW_FREE:

 XFree(pcols);

DW_SKIP: ;

Chapter 2. Supported Workstations 27

Window Mapping and Resize

The PHIGS static model for the display surface is maintained by the graPHIGS API and the device

coordinates are defined as the size of the root window on the default screen. Typically, these are the

maximum extents of the display surface. X allows windows to be larger than the display surface, but the

larger windows will not be completely visible.

The Set Device Coordinate Mapping Method (GPDCMM) subroutine allows your application to select either

1=MAPPED or 2=DIRECT as the window mapping method. The 1=MAPPED method of display is the default.

When using the 2=DIRECT display method, the graPHIGS API displays the device coordinate (DC) range

directly in the X-Window with no scaling. This method of display is analogous to a ″porthole″ rather than

the ″rubber sheet″ behavior exhibited by the 1=MAPPED method of display.

Mapped Display Method

If the window mapping method is set to 1=MAPPED, the graPHIGS API will scale all the data for a

workstation to the current window size, maintaining the aspect ratio of the device coordinates. A

workstation with square device coordinates will be mapped to the largest square region in the window and

a workstation with rectangular device coordinates will be mapped to the largest rectangular region in the

window. The display surface will also be centered in the window.

With the exception of the pixel primitive, all primitives, including annotation text and polymarkers, are

scaled to the window. The pixel primitive position is transformed to the new window size but the size of the

pixel primitive represents a fixed number of pixels on the screen. In addition to the primitives, all the input

echo areas, echoes, GPMSG and pick aperture are scaled.

Direct Display Method

When a workstation is opened, the DC values in the workstation description table are initialized using the

size of the root window for the DC limits. When graPHIGS API data is displayed in an X-Window, the

lower-left corner of the DC volume is aligned with the lower-left corner of the window. If the window is

smaller than the DC range addressed in the data, then the window clips the data. If the window is larger

than the display data, the area of the window beyond the DC range of the data is unused.

28 The graPHIGS Programming Interface: Technical Reference

When the 2=DIRECT method is used, neither the geometry nor the rendered size (line width, for example),

is scaled. The area available for display is the only thing that changes. The application can, however, use

the transformation pipeline to cause the geometry to grow or shrink. A control variable is available to scale

the primitive nominal DC sizes, allowing the application to stretch, shrink, or leave them unchanged. The

scaled nominal primitive size is used with various scale factor attributes, such as the line width scale

factor, to render the primitive. This control allows applications to globally scale primitive sizes without

changing scale factor attributes. This scale factor affects the following DC values:

v Nominal line width

v Nominal marker size

v Nominal edge width

v Nominal annotation height

The 2=DIRECT display method, used with other graPHIGS API functions, allows an application to fill an

X-window when the user resizes the window. The following sequence is an example:

1. The transformation pipeline transforms a region of the Normalized Projection Coordinate system (NPC)

to a viewport in device coordinates (DC), filling the X-window.

2. The application uses the Window Resize Notification Control Escape to enable event notification when

a resize occurs.

3. The application receives the resize event and uses the Get Window (GPGWIN) subroutine to

determine the new window size.

4. The application changes the view table and workstation transformation to the new values so that the

specified area of World Coordinates fills the new X-window area.

5. The application issues update workstation, causing the window to be redrawn with the new

transformation values.

Figure 1. Direct Method of Display to X-Window. This illustration depicts the clipping of text by a window. The

illustration shows a rectangular region (the window) within a larger region (the display surface). The smaller region

contains the first five letters of the word geometry (geome). A ghost image of the last three letters of geometry (try) is

shown in the larger region.

Chapter 2. Supported Workstations 29

While this processing takes place, no WDT or WSL values associated with device coordinates are

changed. The maximum DC value that the application can specify is the size of the root window.

Specifying larger values results in an error. DC values smaller than the WDT DC are clipped to the current

window size. This adjustment is not an application error nor is any warning returned to the application.

For any window mapping method, the application can request notification when a window resize occurs.

The graPHIGS API enables (or disables) the notification of window resize events through an escape

function (1009: Window Resize Notification Control). When this notification is enabled, all window resize

events are sent to the graPHIGS API application by using the graPHIGS event queue. When the

application gets control back from the Await Event (GPAWEV) subroutine, an event code indicates that the

window size has changed.

Be aware that resizing the graPHIGS API window causes an implicit update of the display. Any deferred

actions on the display surface will occur with a resize. The application can request, through escape 1009

(Window Resize Notification Control), whether or not it wants the graPHIGS API to redraw the contents of

the window when a resize occurs. By default, the graPHIGS API redraws the contents of the window when

a resize occurs.

The inquiry subroutine, Inquire Mapped Display Surface Size (GPQMDS) allows the application to obtain

the display size on an X workstation. This size is referred to as the mapped display surface size. The

GPQMDS subroutine returns the size of the window in device coordinates (i.e. meters) and in address

units.

The Geometric Text Culling Escape, which accepts a size in device coordinates, is interpreted as the size

on the physical screen and not as a size on the workstation display surface, and thus the cull size is not

scaled to the window. Geometric Text Culling is an optimization used by the X device driver to replace

geometric text with a box, or completely clip it, when the geometric text is too small to read. When the

window size is increased and the text is large enough to be read, the cull size is not scaled to allow the

text to be drawn.

Exposure Events

The application can request notification when a window exposure occurs. The graPHIGS API enables (or

disables) the notification of window exposure events through the escape function (1011: Window Exposure

Notification Control). When notification is enabled, all window expose events are sent to the graPHIGS API

application using the graPHIGS API event queue as event class 106. The graPHIGS API exposure event

includes data which must be retrieved using the Get Window (GPGWIN) subroutine, for event class 106

(Window Exposure Event). GPGWIN returns a bit field of flags indicating which views have been affected

by the exposure.

Additionally, the application can use the Window Exposure Notification Control Escape to specify if the

graPHIGS API should update the currently displayed screen when a window exposure occurs. If the

application chooses to update the display itself, the graPHIGS API clears the exposed rectangular region

on the visible rendering target at the earliest possible moment. For DWA clients, the rectangles are not

cleared while Immediate Elements are being rendered within a Begin Structure - End Structure sequence.

When the graPHIGS API clears exposed regions, only the visible rendering target is cleared. No other

rendering targets or rendering resources are affected by the clear. (Refer to Explicit Traversal Control for

additional information.)

Note: An implicit update may occur to reflect the current contents of STRUCTURE STORE on DWA

Adapters. See Table 4. Configurations Supporting X Workstation for graPHIGS API Running on the

RS/6000 to determine which adapters support DWA mode.

Collapsing Events

The graPHIGS API attempts to collapse multiple X Windows exposure and configure notify events into a

single graPHIGS API event class. For multiple exposure events, the graPHIGS API returns a single

Window Exposure Event (event class 106) with a list of views affected by all the exposed regions of the

30 The graPHIGS Programming Interface: Technical Reference

window. For combinations of window exposure and configure notify, only the configure notify is returned to

the application as a Window Resize notification, and no Window Exposure events are returned in this

case.

Interaction of X and graPHIGS API Color Resources

Color management is one of the most difficult topics that an X windows application must deal with.

Therefore, the graPHIGS API has been designed so that applications do not have to be aware that they

are operating in an X window. For those applications that wish to have a closer integration with other

clients, the graPHIGS API provides the flexibility to manage the interaction of color with other X clients.

The major difficulty in managing color resources is that the physical resources of a display are limited and

must be shared by all clients using that display. The X server isolates the client from these limitations by

virtualizing the color resources so that each client can use as many colors as it needs. Each window has a

colormap that defines the mapping between the pixel values used in the window and the color that will

appear on the monitor. Different windows can share colormaps or have unique ones. The colormap is

associated to the window through the colormap attribute of the window.

When virtual color allocations exceed the available physical resources, only a subset of the clients can

have their requested colors active at one time. For top level windows which are children of the root, the

decision as to which colormaps should be active is left up to the window manager. For descendents of the

top level windows which have different colormaps, there is no current convention as to how their

colormaps should be made active. Typically, the descendents of a top level window will share the

colormap associated with the top level window.

When the number of virtual colormaps exceeds the number of physical colormaps, the window manager

will enforce some policy as to which windows have their virtual colormaps loaded into the physical ones.

The window manager will typically ensure that the top level window that contains the pointing device has

its colormap loaded. This implies that other windows may not have their colormap installed and therefore

will be displayed with the wrong colors. This produces what has become known as the ″false color

effect″: as the input focus moves from window to window, the colors in some windows may change. Most

window managers install the colormap of the window that has the input focus. In the worst case, some

windows may become invisible or incomprehensible because the pixel values used in those windows

correspond to approximately the same intensities of black or white in the currently installed colormap. To

avoid this ″technicolor effect″, either the hardware must provide additional physical colormaps or the

clients must be programmed to share colormap entries.

X also defines six different techniques for mapping pixel values into a color or intensity on a monitor.

These are referred to as visual classes. The visual class of a window is defined when it is created and

must be one that is supported by the server for the target screen. The six visual classes are:

v StaticGray

v GrayScale

v StaticColor

v PseudoColor

v TrueColor

v DirectColor

If you are unfamiliar with these concepts, you should refer to the X documentation since these are key to

understanding how a graPHIGS API workstation interacts with the resources of an X server.

One of the important attributes of visual classes StaticGray, StaticColor, and TrueColor is that their

colormaps are read only while the other three visual classes have colormaps that can be modified as well

as read.

Chapter 2. Supported Workstations 31

When the graPHIGS API creates a window, the visual class will default to that of the root window on the

target screen. If the application creates the window, the graPHIGS API will use the visual class of the

window that is passed in. The visual class will be used to determine some characteristics of the graPHIGS

API workstation that is created. (See the GPES subroutine for information on the Inquire X Visual List

Information escape.) These characteristics are summarized in the following table:

 Table 7. WDT Content For Each Visual Class

StaticGray GrayScale StaticColor Pseudo-Color TrueColor

(Note 1)

Direct-Color

(Note 1)

Frame Buffer

Type

Indexed Indexed Indexed Indexed Component Component

No. Frame

Buffer

Components

1 1 1 1 3 3

Color Available No No Yes Yes Yes Yes

Display Color

Table Size

See Note 2 See Note 2 See Note 2 See Note 2 See Note 2 See Note 2

Is the Display

Color Table

modifiable?

No See Note 3 No See Note 3 No See Note 3

Available Echo

Methods

XOR XOR and Bit

Plane

XOR XOR and Bit

Plane

XOR XOR and Bit

Plane

Rendering

Color Table

Default

Content (Note

4)

Identity Index

Map

Identity Index

Map

Identity Index

Map

Identity Index

Map

Identity Index

Map

Identity Index

Map

Default Color

Table for

GPCR

0 See Note 5 0 See Note 5 0 See Note 5

Default Color

Processing

Method

Bitwise Bitwise Bitwise Bitwise Bitwise Bitwise

Available Color

Processing

Methods

Workstation_

Dependent,

Bitwise

Workstation_

Dependent,

Bitwise

Workstation_

Dependent,

Bitwise

Workstation_

Dependent,

Bitwise

Workstation_

Dependent,

Bitwise

Workstation_

Dependent,

Bitwise

Available

Rendering

Color Models

RGB RGB RGB RGB RGB RGB

Notes:

1. This visual class is supported only on DWA and XSOFT workstations.

2. The display color table will have the same number of entries as the X colormap if XOR echo method is

used or an overlay bit plane is available. If bit plane echo is used, the display color table will have half

the number of entries as the X colormap.

3. If the application specifies the XNOCLRMP PROCOPT (see PROCOPT (Processing Options)) to

suppress the creation of a colormap by the graPHIGS API, the display color table is not modifiable

through the graPHIGS API. Its content must be modified through the X programming interface.

4. Identity Index Map means that the pixel values produced by the graPHIGS API rendering pipeline will

be equal to the color index in the WSL or structure elements as specified by the application.

5. The default will be the display color table if it is modifiable, 0 otherwise.

32 The graPHIGS Programming Interface: Technical Reference

The following discussion about colormap allocation assumes that the visual class of the window has a

corresponding colormap that is modifiable (GrayScale, PseudoColor or DirectColor). The application

programmer has a choice as to whether the application or the graPHIGS API allocates the colormap that is

to be used for the window that the graPHIGS API workstation will use. If the application does not pass in a

window identifier through a PROCOPT then the graPHIGS API automatically allocates a colormap as well

as the window. The colormap attribute of the window is then set to that of the allocated colormap. When

the application passes in the window identifier through a PROCOPT, the graPHIGS API will not allocate

and assign a colormap if the XNOCLRMP PROCOPT is specified (see XNOCLRMP (Do Not Create an X Color

Map)). The colormap attribute of the window that was passed in will not be modified.

Only when the graPHIGS API allocates the colormap can it be modified through the GPCR and GPXCR

subroutine calls. The allocated colormap always corresponds to the display color table. When the

graPHIGS API does not allocate the colormap, the application must set the colormap through the X

programming interface. It cannot be modified through the graPHIGS API programming interface.

The bit plane echo method may require special treatment by the application. When a bit plane echo

method is provided, the graPHIGS API will draw all echoes in the most significant bit plane of each frame

buffer component. The echoes will be erased and drawn independently of the content of the other bit

planes. To produce a constant echo color, the upper half of the X colormap will be loaded with the echo

color and only the lower half of the colormap will be accessible to the graPHIGS API application. Bit plane

echo will not be granted by the graPHIGS API if the X visual class is StaticGray, StaticColor or TrueColor

since the colormap is not modifiable. In this case, the echo method will default to XOR or uses an overlay

bit plane if available. After successful creation of a graPHIGS API workstation, the application should

check whether bit plane echo method is being used or not. If it is, and the application has created the

colormap, then the application is responsible for loading the upper half of the colormap with the echo color.

So far, the X resources that the graPHIGS API uses have been discussed as well as how the application

can affect the allocation of these resources. In the following paragraphs, we will discuss differences

between the X concepts and PHIGS concepts and how the two might coexist using the mechanisms

described above.

One of the fundamental differences between X and PHIGS is that X is primarily concerned with

independent pixel values that the application will use. In contrast, PHIGS, PHIGS PLUS and graPHIGS

API applications are more concerned with color or ranges of colors. In the latter case, it is left entirely up

to the implementation as to what pixel values are generated and how the physical colormap is used.

Ranges of color are introduced in PHIGS PLUS and the graPHIGS API to support depth cueing, lighting,

shading, and direct color specification. In many cases, the implementation is most efficient if it can map

ranges of color to ranges of pixel values. In the graPHIGS API, additional functionality has been introduced

to give the application direct control over the pixel values that are generated. This was done to support

applications that need to create special effects, such as the simulation of overlay planes or to implement

some form of display priority that is independent of the traversal order. Even the applications that use the

direct control over the pixel values still need color ranges for lighting, shading, etc.

A large percentage of PHIGS and PHIGS PLUS applications could be supported if the implementation

maps the specified color values to the closest available on the device. Since the relative intensity of color

can be approximated on the gray visual classes, an application will be most portable across different

devices and visual classes if it relies on the implementation to map the specified colors to the closest

available. However, the quality of the display image will vary depending on the capabilities of the

hardware. This class of applications, which will be termed true color, does not need to manipulate the

graPHIGS API color processing parameters or the content of the display color table once they are

initialized. The TrueColor or DirectColor visual classes would produce the best results for this type of

usage.

Note: The graPHIGS API does not support the closest color approximation on StaticGray and StaticColor

visual classes.

Chapter 2. Supported Workstations 33

Some applications may require more accurate color approximation on some visual classes than can be

achieved through closest color approximation since the accuracy or quality decreases as the number of

simultaneously displayable colors decreases. For example, on an 8 bit plane system (256 colors), closest

color approximation is only acceptable if dithering is supported. Otherwise, the application needs more

direct control over the generation of pixel values to optimize the usage of color. The application could

choose to allow only 4 object colors. In this case, it could use 64 color table entries to represent different

intensities of each of the 4 colors.

If an application requires better color fidelity or any of the special effects described above, it must take a

more active role in how the pixel values are generated and how the pixel values get mapped to a color on

the monitor. To do this, it must manipulate the color processing parameters and content of the display

color table. This class of application will be termed direct pixel control. For visual classes that have read

only colormaps, it is almost impossible to support this class of application since the mapping between pixel

values and the resulting color is fixed. Fortunately, these visuals are becoming less common.

In order to share colors and to avoid the ″technicolor effect″, either the colormap must be static (automatic

sharing) or the application must explicitly control the pixel values that are produced by the graPHIGS API.

In the former case, it has already been stated that it is difficult to support applications that require the

special effects described above as well as to optimize the fidelity of the color approximation. Therefore, the

best way to share the X color resources is for the application to take an active role in controlling the

generation of pixel values.

Since the graPHIGS API does not understand how the application will use the color facilities, it will allocate

an entire colormap instead of attempting to allocate specific colormap entries from X. This implies that the

″technicolor effect″ will most likely result when the graPHIGS API allocates the colormap. If the application

wishes to minimize this effect, then it should suppress the creation of the colormap by specifying the

XNOCLRMP PROCOPT (see XNOCLRMP (Do Not Create an X Color Map)) and explicitly manipulate the color

processing parameters to control the pixel values that get generated.

To facilitate this usage, the default color processing parameters and content of the rendering color table

will be set to map color indexes directly to pixel values. The resulting pixel value will be the same as the

specified index. This will make it easier to share pixel values and colors with X. Notice that this initial setup

is not appropriate for using direct color specification unless the application calculates the color components

based on the desired pixel value and color processing parameters. If depth cueing, lighting, or shading are

enabled, the pixel values generated will not necessarily match the specified color index since the rendering

pipeline will modify them.

The following list summarizes the guidelines for applications that fall into the direct pixel control class. This

may be due to the special effects which are desired or because the application has limited color

requirements and wants to avoid the ″technicolor effect.″

v If the application does not need color ranges, such as for depth cueing or shading, then it can

implement the following to minimize the technicolor effect:

1. Create the window through X, specifying the default visual class.

2. Create the graPHIGS API workstation, passing in the window identifier and suppressing colormap

creation.

3. As colors are needed, perform calls to the X programming interface to find the closest color

available in the default map or allocate a colormap entry from the default colormap.

4. Specify all attribute colors through the graPHIGS API as indices using the pixel values allocated

through X.

This technique works well for all visual classes including StaticGray and StaticColor.

Notice that for bit plane echo, an entire colormap probably needs to be allocated since half of the

colormap should be loaded with the echo color. This technique works well only when echo is not

required or when XOR echo method is used or when overlay bit plane method is used.

34 The graPHIGS Programming Interface: Technical Reference

v The previous technique could also be used if limited ranges of color are required. The steps to

accomplish this would be:

1. Create the window through X, specifying the default visual class.

2. Create the graPHIGS API workstation, passing in the window identifier and suppressing colormap

creation.

3. Using the XAllocColorCells function in the X programming interface, attempt to allocate a range of

color cells from the X server. If the allocation from the default colormap fails, allocate a new

colormap and try again. If a new colormap is allocated, the colormap attribute of the window would

have to be modified.

4. Set the graPHIGS API color processing parameters to generate pixels in the range that were

allocated. For example, if four contiguous planes are requested from XAllocColorCells, it might

return a pixel value of 0x80 and a mask of 0x01, 0x02, 0x04, and 0x08. In this case, setting a color

processing representation to bitwise (0,4,0) with a pad of 0x80, would provide 16 pixel values

corresponding to 16 quantization levels of the green color component.

5. Colors could then be specified as direct pixel values through color indices if the rendering color table

has not been modified. The content of the rendering color table could be changed and direct color

used as long as the color processing parameters are set to generate pixels in the allocated ranges.

Notice that for bit plane echo, an entire colormap probably needs to be allocated since half of the

colormap should be loaded with the echo color. This technique works well only when echo is not

required or when XOR echo method is used or when overlay bit plane method is used.

v This technique is a slight modification of the previous two. Instead of using the default map, the

application would allocate a new colormap and copy the default colormap to it. The application could

then set or use any entry without allocating it from X resulting in more flexibility. If the application then

started using colormap entries at the top first, it would minimize the impact on other windows which

typically share entries at the bottom of the colormap.

v The simplest technique is to let the graPHIGS API allocate a colormap, realizing that users may

encounter the ″technicolor effect.″

The following list summarizes the guidelines for applications that fall into the true color class and do not

want to worry about the pixel values that get generated:

v If the visual class is TrueColor, the application can specify the desired color through either the rendering

color table or direct color elements freely.

v For visual class GrayScale, PseudoColor, and DirectColor, the application could allocate the colormap

or allocate a subset of a colormap from X depending on its needs. Whether the application allocated the

colormap entries or not, it would set the graPHIGS API color processing parameters to include a few

bits from each color component in the resulting pixel value, and it would load the colormap with

corresponding color ramps (graduated color components). The application could then specify the

desired color through either the rendering color table or direct color elements freely. For a direct color

visual class, the colormap is usually loaded with ramps of red, green, and blue. This colormap content

is used frequently and should be sharable with other X clients. There are several standard colormaps

defined by X that might be appropriate for this class of application.

v The visuals StaticGray, StaticColor cannot be used for this class of application since the graPHIGS API

does not currently provide an appropriate color approximation method.

A few final notes on color:

v Color table animation cannot be performed on a visual class with a read only color table.

v Pixel primitives cannot be displayed on visual classes with read only colormaps without modifying the

pixel values prior to display since the colormap cannot be changed.

Chapter 2. Supported Workstations 35

Additional Notes for DWA Adapters

Note: The following information applies to all DWA Adapters except the POWER GT4 Family and the

POWER GTO.

Using the visual associated with the window, the graPHIGS API supports creating graPHIGS windows as 8

bit Indexed, 24 bit TrueColor, or 24 bit DirectColor. Additionally, the graPHIGS window MUST be created in

the color planes and for the best performance, it is recommended that the X window (root window when X

is started) be created in the overlay planes. In support of echoes, the graPHIGS API will create a child

window in the overlay planes.

The graPHIGS window may be created as follows:

v By the application who then passes the window id to graPHIGS via the XWINDID procopt (see

XWINDID (X Window Identifier) for additional information).

v By the graPHIGS API on behalf of the application when the workstation is created.

The visual associated with the graPHIGS window being created is selected as follows:

v Specified by the application from the supported visuals for the color planes via the XGetVisualInfo

function. It is then passed to the XCreateWindow function to create the graPHIGS window in the color

planes.

In this case, start X in the overlay planes as follows:

For POWER GXT255P and POWER GXT250P:

 xinit -- -x dbe

For all other DWA Adapters (except the POWER GT4 Family and the POWER GTO):

 xinit -- -x dbe -x abx

and within your application, select the desired visual and pass it to the XCreateWindow function.

This method allows you to start X in the overlay planes while the graPHIGS API is running in the color

planes, giving you the best performance. Windows in different planes will cause fewer graPHIGS

redraws, since there will be fewer exposure events. If your application is NOT currently written to select

a visual, this will require a change to your application.

If your system administrator has installed the sample programs, there will be a sample program and

README file in the /usr/lpp/graPHIGS/samples/windows directory showing how an application selects

the desired visual and creates a graPHIGS window.

v Defaults to using the visual associated with the root window (the window created when X was started).

This will occur if you do not pass a selected visual to the XCreateWindow function.

In this case, you start X in the color planes and select one of the following three graPHIGS API

supported frame buffer configurations for the root window:

– The 8 bit visual:

For POWER GXT255P and POWER GXT250P:

 xinit -- -x dbe -layer 0

For all other DWA Adapters (except the POWER GT4 Family and the POWER GTO):

 xinit -- -x dbe -x abx -layer 0

– The 24 bit DirectColor visual:

For POWER GXT255P:

 xinit -- -x dbe -d 24 -cc DirectColor

For all other DWA Adapters (except the POWER GT4 Family and the POWER GTO):

 xinit -- -x dbe -x abx -layer 0 -d 24 -cc DirectColor

– The 24 bit TrueColor visual:

36 The graPHIGS Programming Interface: Technical Reference

For POWER GXT255P:

 xinit -- -x dbe -d 24 -cc TrueColor

For all other DWA Adapters (except the POWER GT4 Family and the POWER GTO):

 xinit -- -x dbe -x abx -layer 0 -d 24 -cc TrueColor

This method produces the desired results and requires no change to your application, but it does not

give you the best performance. If the X window is manipulated, causing an exposure event, more

graPHIGS API redraws may occur since X and graPHIGS windows are both created in the color planes.

Additionally, the graPHIGS API uses an overlay window for echoes that it creates as a child of the

graPHIGS window. Since this overlay window has a transparent background pixel, the graPHIGS window

passed in MUST be in the base planes. Furthermore, if the graPHIGS window is passed in from the

application, and is NOT the top level window, the application must add a Window Manager Colormap

Install property to the application’s top level window for the graPHIGS created overlay window in order for

the overlay window’s colormap to be installed when the graPHIGS window gets focus.

The graPHIGS API and X Input Relationship

The graPHIGS API has been designed to be consistent with the behavior of other applications sharing the

same input devices, namely the keyboard and the mouse. The graPHIGS API will never grab these

devices but it will expect the server to direct input to the window when the window has the focus. The keys

on the keyboard will be interpreted according to the current keycode to keysym mapping. X maintains a

device independent mapping between the scancodes generated from the keyboard and the meaning of a

key. For example, the key top with the number ’1’ will generate a keycode that will be mapped to the

keysym for number one. The graPHIGS API will interpret the keyboard events via keysyms. Therefore, if

you change the keycode to keysym mapping via the xmodmap utility, the graPHIGS API will automatically

interpret the new mapping. Typically, the character on the key will generate the identical keysym. This area

gets a little more difficult when you consider the control keys. The following list describes some of the

behavior that a particular server may display:

v A two button mouse works the following way under X windows. You will notice that button two is not the

right mouse button. Remember this when you run your application, otherwise you are likely to think that

there is a problem.

– Press Button 1 - generates an event indicating Button 1 pressed

– Press Button 2 - generates an event indicating Button 3 pressed

– Press Button 1 and 2 together - generates an event indicating Button 2 pressed.

v The available button and PFKey counts in the actual WDT will be for the maximum number of buttons

and PFKeys that the X workstation will support. There may be fewer PFKeys on your keyboard or

buttons on your mouse.

(Ref #1.) On platforms that support the Lighted Program Function Keys (LPFKs) and Dial X server

extensions, the graPHIGS API uses these extensions to access the lighted keys and dials (see AIX 5L

Version 5.3 AIXwindows Programming Guide). When the graPHIGS API window receives input focus,

graPHIGS API assumes itself to be the owner of the LPFKs and Dials and attempts to set the attributes of

the devices (the lights mask and dial resolution) as needed.

graPHIGS applications can no longer be run on an operating system using X11R4 and displayed on an

operating system using X11R5 because of X input extension compatibility issues. (Please see the

/usr/lpp/X11/README for further explanation.) The recommended way to avert this problem is to open a

graPHIGS remote nucleus on the same system where it is desired to have the graphical output displayed.

For applications that also use these input device extensions independent of the graPHIGS API, a

contention problem can result when the applications also attempt to set the attributes of the devices. To

avoid this contention, the application can issue the Set Physical Device Mode (GPPDMO) graPHIGS API

subroutine to disable the physical button device #1 (LPFKs) and all scalar devices (Dials). When the

physical devices are disabled, the graPHIGS API will not attempt to set the device attributes.

Chapter 2. Supported Workstations 37

When using physical device emulation on the X workstation, you may find it useful to translate the X

windows coordinate system to the physical vector device value ranges. The transformation requires the

use of the mapped display surface (see the Inquire Mapped Display Surface [GPQMDS] subroutine), the

value ranges for the vector device (see the Inquire Physical Device Characteristics [GPQPDC] subroutine),

and the size of the X window (obtained from the X windows interface). The elements of this mapping are

described in Window Mapping and Resize.

The algorithm to achieve a mapping from x coordinate position data to vector device value ranges is as

follows:

 W X Window Geometry.

MDS Mapped Display Surface Components from the Inquire Mapped Display Surface (GPQMDS)

subroutine.

VR Value Range Descriptor from the Inquire Physical Device characteristics (GPQPDC)

subroutine.

V Value passed to the Emulate Physical Device (GPEPD) subroutine.

P Position data in x coordinates.

1. Clip to the Mapped Display Surface, the display surface is centered in the X Window. The

clipping rectangle is computed as follows:

X components: (Wwidth - MDSwidth / 2)

 (Wwidth - MDSwidth / 2 +MDSwidth)

Y components: (Wheight - MDSheight / 2)

 (Wheight - MDSheight / 2 +MDSwidth)

2. Scale from the Mapped Display Surface (in address units) to the vector device value

ranges:

Scale Factors: (VRxhigh - VRxlow) / MDSwidth

Note: Only one scale factor is needed since the value ranges are maintained in the

same aspect ratio as the display surface.

3. Compute a value range from an X position data:

Vx= (Px - (Wheight - MDSwidth / 2)) * Scale Factor

Vy= (Wheight - (Wheight - MDSheight / 2)) * Scale Factor

How the graPHIGS API Uses X Window System Cursors

Whenever a graPHIGS API ″pointing″ input device is active (pick, locator, or stroke), the graPHIGS API

changes the shape of the X pointing cursor when it enters the graPHIGS API window, and restores the

shape of the cursor to its previous shape when it leaves. The shape of the cursor in the graPHIGS API

window depends on the echo area where it is positioned, and which input devices are active.

Normally, in non-X graPHIGS API environments, when no pointing input device is active, no pointing

cursor is displayed. However, in the X environment, the pointing cursor should never be hidden from the

user, who should always be able to locate the pointing cursor as he moves it from window to window. This

practice is part of being a well-behaved X client program. The shape of the pointing cursor in a graPHIGS

API window with no pointing input devices active is the shape of the graPHIGS API window’s parent’s

cursor. In applications where the graPHIGS API window is the top level window (direct descendant of the

root, or background window), the parent’s cursor will usually be the root window cursor. The root window’s

cursor will be displayed in the graPHIGS API window when no pointing input devices are active. Note that

some window managers, such as the OSF/Motif window manager (mwm), will re-parent a window and

supply a different parent cursor.

38 The graPHIGS Programming Interface: Technical Reference

Fixed cursor type -1 (cross hair) extends to the limits of the graPHIGS API window. If the hardware cross

hair cursor is used (either by defining the gPHWCURS environment variable or via the HWCURS

PROCOPT), the cursor extends to the limit of the display. This is currently a limitation that exists in the X

cursor extension.

How the graPHIGS API Handles X Window System Errors

The X Window System handles error conditions by generating an X error event, which is queued back to

the X client program. The X error event contains information about the X request that caused the error

condition. The default action for most X clients is to simply print the error information and then terminate.

The graPHIGS API overrides this default action by intercepting this error event and signaling a graPHIGS

API error to the graPHIGS API application. This method allows the graPHIGS API application to detect the

error and close down in an orderly fashion, preserving application status and data, if desired. By

preventing the termination of the X client program, which is the graPHIGS API nucleus in this case, a

remote nucleus may continue to execute if one of the sessions using the nucleus experiences an X

terminating error condition.

The graPHIGS API nucleus may experience X error conditions for three reasons: resource shortages,

internal programming errors, and communication errors. All requests for X resources made by the

graPHIGS API nucleus are made during graPHIGS API Open Workstation processing. X resources are

simply graphic objects that the X server manipulates, such as Pixmaps or Cursors. Therefore, any

resource shortage conditions will be detected during Open Workstation processing and will result in a

failure of the opening of the workstation. Resource shortage conditions may be caused by:

1. Using an X server that has a very limited set of resources. The graPHIGS API is not especially

resource intensive, so all but the most limited servers should have enough resources.

2. Running a large number of applications that use up the X resources. This type of shortage can be

corrected by removing some of the applications that are holding the resources.

X errors may also be caused by a problem internal to the graPHIGS API nucleus. The error information

returned by X is formatted into a graPHIGS API error message. This error information will give more

details about the error condition.

X communication errors are most likely to happen in a networked environment where the X client

(graPHIGS API nucleus) and the X server are running on different network nodes. If there is a break or

other problem with the network connection, the link between client and server fails, causing the

communication error. X communication errors may also occur if a client window is terminated abnormally,

such as by using a window manager to close a window. The graPHIGS API traps these errors and queues

an error notification to the graPHIGS API application. This is the default behavior, which may be modified

(see Window Deletion for more details).

Editing in Quick Update Mode

Quick update operations fall into two categories, insertions and deletions. Even when editing structures in

replace mode, the operation consists of a deletion followed by an insertion.

Insertion

Insertions are done by adding structure elements to a structure in either insert or replace mode, or by

using the Copy Structure function.

The inserted primitives are drawn on the screen using the attribute and the traversal state that is in effect

at the point of insertion. The traversal state is the collection of all the current values of the various

attributes and transforms that are used to draw primitives on the screen. This traversal state is achieved

by pseudo-traversing the structures up to the point of insertion. Pseudo-traversal processes the structure

elements as if to draw them but does not send them to the screen. The resultant traversal state reflects

the correct data although the display contents remain unchanged except for the inserted primitives.

Chapter 2. Supported Workstations 39

For example, a polyline primitive inserted after a polyline color index attribute, is drawn with the color

specified in the polyline color index structure element. More importantly, it is drawn in the correct position

dictated by any preceding modeling transforms. In general, inserting an attribute structure element affects

certain primitives that follow the inserted attribute. This can be an expensive operation because the redraw

may include many primitives and must continue to the end of the structure, or until the same attribute

structure element is encountered in the structure. This redraw of affected primitives is called attribute

propagation.

Inserting an attribute structure element in a structure can cause a large part of the structure to be redrawn.

This can be very time-consuming and defeat the purpose of quick update. Therefore, no attributes are

propagated except color. Color is a far more common insertion attribute than line type or line width, either

of which could have undesired results such as wide holes or a cluttered screen, if inserted in quick update

mode.

The following structure provides an example:

GPOPST(1);

GPPLCI(3);

GPPL3(...);

GPPLCI(2);

GPPL3(...)

GPCLST();

If the first GPPLCI were replaced in quick update mode, then the first GPPL3 primitive would have to be

drawn, but not the second.

If an execute structure element is encountered in the attribute propagation block, it is executed and drawn

normally. Even if a color attribute structure element is contained in the called structure, attribute

propagation continues after the execute structure because the return from the called structure cancels any

effect of any color attributes in the called structure.

If any attributes other than color are inserted, then quick update mode is aborted. But the primitives that

would be affected by these attributes are not always redrawn. The result may be incorrect display update.

The following two examples illustrate how attribute propagation can affect display in unexpected ways,

depending on implementation:

1. Primitives in the attribute propagation range that are NOT affected by inserted colors may or may not

be drawn. Theoretically, they can be skipped, but the implementation may choose to draw them.

2. Non-color attributes that are inserted following a color attribute in the same insertion operation may be

processed differently. One implementation may choose to propagate these attributes while another

may not.

Note that the first effect can influence the second. Inserting structure elements that have a global effect,

such as modeling transforms, and class names, causes quick update to be aborted and the screen to be

redrawn.

Deletion

Deleted primitives are simply undrawn in the background color. The background color is defined as the

shield color if the view has a shield, or black if there is no shield. Other primitives that overlap the deleted

primitives may be left with holes that are not repaired.

The deletion of an attribute does not affect the display. Deleted attributes are not propagated because the

workstation would have to backtrack to find the previous usage of the attribute in order to determine its

value prior to the deletion point, or pseudo-traverse from the start to the deletion point. It would then have

to forward propagate, drawing the affected primitives with the previous attribute value. This operation is

40 The graPHIGS Programming Interface: Technical Reference

considered too expensive to be quick. Therefore, deleted attributes do not cancel quick update but do not

change the contents of the screen. No special provision is made for the deletion of color attributes as is

done for the insertion of color attributes.

In many cases, the deletion of an attribute is immediately followed by an insertion of the same attribute.

This can happen, for example, if a structure edit is drawn in replace mode to change the value of a color

attribute. In this case, it is appropriate to propagate only inserted attributes to avoid propagating attributes

twice.

The treatment of deleted structure elements other than primitives is extremely implementation dependent.

The graPHIGS Programming Interface: Writing Applications contains information on how to select

modification modes.

The XSOFT Workstation

Overview

The graPHIGS XSOFT workstation is a complete implementation of the graPHIGS API in software. It can

replace the graphics sub-system by performing all graphics operations on the main CPU or workstation.

Traditionally, interactive computer graphics implementations such as graPHIGS have been implemented

with the power of hardware assist. This hardware assist was usually made available in the form of a

graphics sub-system consisting of general purpose processors, custom or semi-custom VLSI rasterizers

and a frame buffer. For example, the IBM 5080 and IBM POWER GTO are graphics subsystems that

connect to a mainframe or workstation respectively. The graphics subsystem is attached to the main CPU

or workstation and was necessary because the general purpose processors of the main CPU were not

capable of driving the graphics performance at interactive speeds. However, RISC processors have

evolved to the point of being able to partly or completely replace the graphics subsystems and drive the

computer graphics at interactive speeds.

Understanding XSOFT

At initialization GPCRWS/GPOPWS, the workstation allocates, in virtual memory, the virtual frame buffer

(rendering targets) and virtual Z-buffer (rendering resources) based on the initial size of the workstation

display surface. The GPQMDS call returns the size of the display surface as it is mapped into the

X-window. Should the display surface change size (via a window resize operation), the rendering targets

and the rendering resources are reallocated based on the new size. These virtual memory areas are freed

when the workstation is closed (GPCLWS).

During an implicit (GPUPWS), explicit (ETC operation), or simulated (quick update) update, the affected

structure elements undergo geometry processing and rasterization into these virtual resources. At the end

of the update, the displayed rendering target in virtual memory will be transferred to the X-window.

The XSOFT workstation uses the GP-MIT-SHM extension to X to make this process more efficient. The X

Windowing System has a rather small limit on the protocol buffer size. This restriction means that the

XSOFT rendering target would be transferred to the X server in small ″chunks″, which impacts the visual

quality of the update as well as the interactive performance. The GP-MIT-SHM extension bypasses the

client-server protocol by transferring the rendering target in one piece through shared memory.

General Information

The XSOFT workstation includes the following:

v Full functionality

Chapter 2. Supported Workstations 41

The graPHIGS XSOFT workstation supports the full functionality of the graPHIGS API. This includes

HLHSR, lighting and shading, depth-cueing, transparency, blending and anti-aliasing in addition to basic

graphic functions. Previously, this functionality was not available across the varied domain of IBM

workstations, processors, and graphics adapters.

v Processor independence

The graPHIGS XSOFT workstation runs on all IBM workstations. This includes the IBM RS/6000

processor family.

v Adapter independence

The graPHIGS XSOFT workstation will run on any 2-D or 3-D 8-bit or 24-bit adapter that supports its

own graphics sub-system or does not have one available.

v Performance

– Scalability

The graPHIGS XSOFT workstation graphics performance can be directly correlated to the IBM

RS/6000. As the workstation’s processor specifications improve, the performance of the graPHIGS

XSOFT workstation will improve.

Configuring a graphics workstation for XSOFT

There are several items that need to be evaluated when considering the graPHIGS XSOFT workstation

and recommending specific configurations.

v Processor requirements

v Memory requirements. The memory requirements generally fall into several areas:

– Disk space requirements for the actual graphics XSOFT library. The graPHIGS XSOFT workstation

shared library is approximately 12 Mbytes in size. This memory is essential for obtaining the high

performance of the graPHIGS XSOFT workstation.

– Paging space requirements

– Virtual memory

v Graphics adapters

The graPHIGS XSOFT workstation will run on any 8-bit or 24-bit graphics adapter. However, since the

graPHIGS XSOFT workstation is dependent on the blt performance of the workstation, the faster the blt,

the better. The performance of bit blt operation on the High Speed Graphics Subsystem (GTO)

adversely effects the performance of the XSOFT workstation. This platform may not provide the

interactive performance necessary for production use. If high performance graphics at a low cost is a

concern, we recommend the use of 8-bit graphics adapters.

For assistance in configuring a system for a specific need, contact an IBM Customer Representative.

Starting the X Server

The XSOFT workstation device driver uses (when available) the graPHIGS Shared Memory Image

(GP-MIT-SHM) extension to X to provide a very efficient means of moving the image of the XSOFT

workstation to the X server display. The GP-MIT-SHM extension is very similar to the sample Shared

Memory Image extension (MIT-SHM) which comes from MIT.

The GP-MIT-SHM extension is only available to the XSOFT workstation device driver when the graPHIGS

nucleus is executing on the same machine as the X server and the X server has the GP-MIT-SHM extension

loaded.

To load the GP-MIT-SHM extension, start the X server with the -x gpshm command line option:

v For a system with X11R5 installed: xinit — -x gpshm

v For a system with X11R4 installed: xinit -x gpshm

Alternately, to automatically load the GP-MIT-SHM extension, add the following line to the static_ext file in

the /usr/lpp/X11/bin directory:

42 The graPHIGS Programming Interface: Technical Reference

gpshm /usr/lpp/graPHIGS/bin/loadgpshm

X Stations And Distributed X-Windows

Whenever the graPHIGS nucleus and the X server are not running on the same machine, for example X

Stations and other distributed X-windows environments, the XSOFT workstation cannot take advantage of

the GP-MIT-SHM extension. Running without this extension limits the interactive performance of the XSOFT

workstation. The GP-MIT-SHM extension can be used in the distributed graPHIGS configuration when the

graPHIGS shell and nucleus are distributed but the X server is executing on the same machine as the

nucleus. Distributing the graPHIGS API in this manner does not limit the performance of the XSOFT

workstation.

The XSOFT workstation supports lighting and interpolated features not supported on the X Stations by the

X workstation type. Occasional or ″view only″ users of an application may find the performance

acceptable. Applications with low frame rates, minimal user interactions, or user interactions implemented

entirely independent of the graPHIGS API may also find this configuration acceptable.

Applications can use the X workstation type to provide interactive performance in the distributed

environment and a second XSOFT workstation to provide a more advanced rendering. This is possible

through the graPHIGS ability to share Structure Store among more than one workstation. For more

information on this capability, see Advanced Concepts.

Special Notes about Color

3D graphics applications have special needs for color processing. The XSOFT workstation creates a

private color table for use in the workstation’s X-window. The use of a private color table can cause the

″false color″ effect on devices that support only one simultaneous colormap. The effect is caused by the

fact that the device can only display one colormap at a time. Therefore, when the focus is on the

graPHIGS window, all other windows are displayed with different colors. Although this problem is not

limited to the XSOFT workstation, the additional color demands of lighting and interpolated shading may

make this problem more noticeable. For more information about this, see Interaction of X and graPHIGS

API Color Resources.

Lighting and interpolated shading techniques often require many colors to achieve the desired effect. Since

8-bit devices can only display 256 colors, the XSOFT workstation will dither colors on these devices.

Dithering is a technique where pixels of different color are placed adjacent to one another to give the

appearance of a third color. Image quality is vastly improved using this technique, although the individual

colors used in the dither can sometimes be noticed as a slight pattern in filled areas. Dithering is applied

to fill area primitives (i.e. polygons and triangles, etc.) and to lines when the color along the line is

interpolated (i.e. Polyline set with data or depth cued lines). Dithering is not applied to constant color lines,

text, markers, view shields, and view borders.

The 6090 Workstation

Shading (SHP) and Expanded Pixel Memory (EPM) are optional features on the 6090 workstation. Your

use of these optional features determines whether some functions are supported by the 6090 workstation.

If you go in and out of setup while your application is running, an implicit update of the screen will occur.

The actual primary character set is determined by the language setup as follows:

v If you specify character set 1-5 or 7 in setup, then the primary character set is 8 (Multi-Language).

v If you specify character set 6 in setup, then the primary character set is 6 (Katakana).

v Specifying character set 8 in setup associates U.S. English with a Kanji keyboard. The primary

character set is 1 and the available input character sets are 1, 8, and 128.

Workstation Configuration

The pre-select highlight, line on line, cursor shape, and color setup options are ignored.

Chapter 2. Supported Workstations 43

Transformation Matrixes

You must put all transformation matrixes in your application in the following format:

 | R11 R12 R13 | 0.0 |

 | R21 R22 R23 | 0.0 |

 | R31 R32 R33 | 0.0 |

 |-------------|-----|

 | S1 S2 S3 | 1.0 |

The values in the fourth column, (0.0, 0.0, 0.0, and 1.0) are always used regardless of what you specify in

your application program.

Temporary Views

Temporary views are not supported.

View Mapping

If the projection reference point is between the near and far clip planes, the projection type is changed to

PARALLEL and an error is generated.

The 5080 Workstation

General Information

The IBM 5080 Graphics System uses 16-bit integers for the coordinates of figures to be drawn. Since

graPHIGS API applications pass 32-bit floating-point coordinate parameters, a mapping must be done to

represent the coordinates received from the application in the correct format for the 5080. This mapping

(“normalization”) can result in distortion when the floating-point format cannot be mapped well into the

available integer range. For example, the extents of the data might be very small when compared to the

distance of the data from the origin of the coordinate system, or one extent of the data might be very small

when compared to other extents of the same data. To minimize these effects of normalization, center your

data about the coordinate system origin whenever possible.

Note: The maximum number of structure elements in a single structure that the 5080 can display is

32,767. When an update to the workstation is processed and the resultant element count exceeds

this limit, the update will be ignored and will result in an error.

Workstation Configuration

The pre-select highlighting and line on line setup options must be set to off. Cursor shape and color setup

options are ignored.

Display Models

The DISPLMOD PROCOPT is used to identify the use of different 5081 displays. The default is the 19-inch

display (5080-19). If you are using the 16-inch display (5081-16), specify 5081-16 as the PROCOPT value

(see PROCOPT (Processing Options)). If you are using the 23-inch display (6091-23), specify 5081-23 on

the PROCOPT value. All other values that start with the characters 5081- are treated as the 19-inch display.

Class Set

The class names which you can specify are limited to the range 0 through 255. Any class name

encountered which is greater than 255 or less than 0 is ignored.

Transformation Matrixes

All transformation matrixes specified by an application must have the following format:

44 The graPHIGS Programming Interface: Technical Reference

| R11 R12 R13 | 0.0 |

 | R21 R22 R23 | 0.0 |

 | R31 R32 R33 | 0.0 |

 |-------------|-----|

 | S1 S2 S3 | 1.0 |

The values in the fourth column, (0.0, 0.0, 0.0, and 1.0), are always used regardless of what was specified

by the application.

Temporary views

Temporary views are not supported.

View Mapping

If the projection reference point is between the near and far clip planes, the projection type is changed to

PARALLEL and an error is generated.

The GDDM Workstation

Class Set

The class names which you may specify are limited to the range 0 through 255. Any class name

encountered which is greater than 255 or less than 0 is ignored.

View Mapping

If the projection reference point is between the near and far clip planes, the projection type is changed to

PARALLEL and an error is generated.

The GDF Workstation

General Information

The Graphics Data Format (GDF) workstation provides a means of capturing and storing data produced by

applications in a form which can be processed by other programs. This form consists of a sequence of

graphics orders and their parameters.

The GDF workstation is an output-only workstation which is not associated with a physical graphics

device. The GDF support assumes that the target display device has the characteristics of the

3270-PC/GX. When an application program interacts with a GDF workstation, images defined by the

application are converted into GDF display lists and stored in files. Subsequently, these files can be

processed by a program such as IBM Color Plotter Support for GDDM Graphics Data Format (CPS),

which can plot the file to the IBM family of plotters.

Note: The CPS programs are supplied with the graPHIGS API

The application is free to select a connection identifier which is used to derive the names of the files

created by the GDF workstation.

In the VM and MVS environments, a valid connection identifier consists of letters, numbers or

underscores. The file name is created by taking the first five characters of the connection identifier. If any

of these characters are blanks, they are replaced with a fill character. Lower case characters are

converted to upper case. An ’X’ replaces a blank first-position character, and a ’0’ replaces any other

blanks between the second and fifth positions. The GDF workstation then concatenates to the end of the

file name a three-digit update number in the range 001-999.

Chapter 2. Supported Workstations 45

In the VM and MVS environments, the logical record length of the file must be 400 bytes and it must be

fixed record format.

On VM/SP, the resulting file name is used as the file name of the generated file; the file type is always

ADMGDF. On MVS, the resulting file name is used as the member name in a partitioned data set that has

been allocated using the DDNAME of ADMGDF.

In the operating system, the connection identifier must be a valid file name which may include a full or

partial path name. The GDF workstation strips the optional path name from the connection identifier and

takes the first five characters from the resulting file name. Upper and lower case characters are valid. If

any of these characters are blanks, they are replaced with a fill character. An ’X’ replaces a blank

first-position character, and a ’0’ replaces any other blanks between the second and fifth positions. The

GDF workstation then concatenates to the end of the file name a three-digit update number in the range

001-999, and suffixes the extension. The file is then created in the current directory or in the directory

specified by the path name in the connection identifier.

A new file is generated each time the GDF workstation is updated. When a new file is created, the number

represented by the last three characters of the file name is increased by one. If this number exceeds 999,

it is reset to 001. A new file will overwrite an existing file which has the same name. At this point then, the

first file created during the session will be overwritten. Therefore, a maximum of 999 different files can be

generated during a session.

If, for example, an application specifies ’ABC’ as the connection identifier for a GDF workstation, the files

created on successive workstation updates will be:

 Table 8. Filename Examples

UPDATE NUMBER FILENAME

1 ABC00001

2 ABC00002

3 ABC00003

. .

. .

999 ABC00999

1000 ABC00001

1001 ABC00002

Class Set

The class names which you may specify are limited to the range 0 through 255. Any class name

encountered which is greater than 255 or less than 0 is ignored.

GDF Conversion Utility

The CVTGDF utility converts a file which is in GDF format (a file generated by a GDF workstation running

on an operating system platform) to ADMGDF format, which is the format produced by a GDF workstation

running in the VM/SP or MVS environment. This utility resides in the directory /usr/bin.

To run the utility the syntax is:

cvtgdf /dir/fn.gdf

 | | |

 | | must be the file extension

46 The graPHIGS Programming Interface: Technical Reference

| the file name

 specifies the directory in which the file resides

 (if the file resides in the current

 directory, this information may be omitted)

The converted output is placed in the /dir/fn.cfgdf file.

When uploading the file from the operating system to the VM or MVS host (using, for example, the 3278

emulation program), a record length of 400 and a fixed record format must be specified. On MVS, the file

must be placed in a dataset which has been allocated with the DDNAME ’GDF’.

View Mapping

If the projection reference point is between the near and far clip planes, the projection type is changed to

PARALLEL and an error is generated.

The CGM Workstation

General Information

The Computer Graphics Metafile (CGM) workstation provides a means for the application to store

graphical information about a picture in a file. The file format consists of a set of elements encoded in

CGM binary format according to ANSI standards. When an application program interacts with a CGM

workstation, images defined by the application are converted into a list of CGM elements and are stored in

a single file. The CGM workstation is an output-only workstation which is not associated with a physical

graphics device. The graPHIGS API CGM support assumes that the target display device has the

characteristics of the 3270-PC/GX. See General Output Facilities for details.

The filename is derived from the connection identifier.

On the operating system, the filetype is CONNID.cgm. For example, if an application specified TSTALL as the

connection identifier on a CGM Workstation, the application creates the file: TSTALL.cgm. Upper and lower

case characters are allowed. If the connection identifier consists of all blanks, the output CGM file is

IBMCGM.cgm.

On MVS, the user must have allocated a sequential dataset with the DDNAME ’CGM’.

On VM, the filename is always converted to uppercase and the filetype is always CGM. For example, if an

application specified ’ABC ’ as the connection identifier on a CGM Workstation, the application creates the

file: ABC CGM. This file includes all the graphics. If the connection identifier consists of all blanks, the

filename is IBMCGM. The CGM workstation recognizes both upper and lowercase.

The CGM file is opened when the workstation is opened. Failure to open the file is a failure to open the

workstation. Any data written to the CGM file with an Escape (GPES) subroutine (1014) before the first

update to the workstation results in a non-conforming file.

Each update workstation operation creates a new picture in the file. The first update workstation operation

creates the header. The end metafile element is not generated until close workstation is issued, therefore

the CGM file does not conform unless you explicitly close the workstation. The output format is a fixed

record length of 400 bytes. The output is a single CGM metafile with each update workstation generating a

separate picture within the metafile.

Class Set

The class names which you may specify are limited to the range 0 through 255. Any class name

encountered which is greater than 255 or less than 0 is ignored.

Chapter 2. Supported Workstations 47

View Mapping

If the projection reference point is between the near and far clip planes, the projection type is changed to

PARALLEL and an error is generated.

CGM File Structure

For general information about CGM workstations, see The CGM Workstation.

A CGM file represents a snapshot of a picture created by a program. The file holds an ordered set of

elements used to describe the picture in a completely device-independent way. As shown in the example

below, the structure of a CGM file accommodates more than one picture.

 METAFILE PICTURE

 ------------------ -----------------

 | Begin metafile | | Begin picture |

 ------------------ -----------------

 | |

 v v

 ----------------------- ----------------------

 | Metafile descriptor | | Picture descriptor |

 ----------------------- ----------------------

 | |

 | v

 |<-------- ----------------------

 | | | Begin picture body |

 ----------- | ----------------------

 | PICTURE |--- |

 ----------- v

 | ------------------------

 | | Graphical primitives |

 | | and |

 v | Attributes elements |

 ---------------- ------------------------

 | End metafile | |

 ---------------- v

 | End picture |

There are three standard ways of encoding all CGM elements:

 Binary Stores all elements as a bit stream.

Character Stores the data in a compressed manner.

Clear text Represents all elements in readable text

The graPHIGS API CGM device driver always uses the binary encoding method.

Binary encoding

All elements comprise an element header and the element data.

Element Header

The element header is made of an element class, an element identifier, and the parameter length. This

information can be stored in two formats.

v Short form (Only accommodates up to 30 bytes of data)

48 The graPHIGS Programming Interface: Technical Reference

|15 14 13 12| 11 10 9 8 7 6 5| 4 3 2 1 0 |

| Element | Element | Parameter |

| class | Identifier | List length|

v Long form (Accommodates up to 32,767 bytes of data)

|15 14 13 12| 11 10 9 8 7 6 5| 4 3 2 1 0 |

| Element | Element | 1 1 1 1 1 |

| | | |(indicates long format)

| class | Identifier | |

|P| Parameter list length |

 |

 |

 -- 0 - Indicates last partition

 1 - More partitions

 (Each partition may contain up to 32767 bytes)

Element Data

CGM defines different formats for integers and real values. The graPHIGS API CGM device driver stores

integer values as two-byte integers. Negative values are represented as two’s complement. All real values

are represented as four-byte IEEE floating-point numbers.

Refer to the ANSI CGM documentation for detailed information about element data.

Delimiter Elements

In CGM, the following metafile will appear in the following order:

 Begin Metafile Begins the file. This element has a single parameter which is a character

string that identifies the metafile and has a single parameter. For metafiles

produced by the graPHIGS API, this character string is graPHIGS API

Metafile./TD>

Begin Picture Delimits the beginning of a picture description and forces all attributes to be

reset to the default values. It contains a character string parameter

representing the name of the picture. For metafiles produced by the

graPHIGS API, the name of the picture is PICT n where n is incremented

from 1 to n. All pictures in a CGM file are independent from each other and

must start with this element. Each update workstation generates a new

picture in the output metafile.

Begin Picture Body Ends the picture description and starts the definition of the picture. This

includes a list of graphical primitives and attribute elements. There are no

parameters for this element.

End Picture Ends the picture. It has no parameters.

End Metafile Ends the metafile. It has no parameters.

Metafile Descriptor Elements

These elements inform the interpreter of the capabilities needed to interpret the CGM file successfully.

Included in these elements are:

 Metafile Version Specifies the version of the CGM standard. The CGM device driver uses

version 1.

VDC Type Specifies the type of VDC values used. The CGM device driver uses only

real VDC (virtual device coordinates).

Integer Precision Specifies the precision for integers. The CGM device driver uses 16 bit

integers to represent integers.

Chapter 2. Supported Workstations 49

Real Precision Specifies the precision for the real numbers. The CGM device driver stores

reals as 32-bit floating-point numbers with 9 bits for the exponent and 23 bits

for the fraction. This is stored in IEEE floating-point format. The VDC real

precision parameter value is 0,9,23.

Index Precision Specifies the precision for indexes. Integers are used to represent indexes.

The CGM device driver uses 16 bit index precision.

Color Precision Specifies the precision for each color component contained in the color table.

The CGM device driver uses 16 bit integers to represent each color

component.

Color Index Precision Specifies the precision for the color index. The color indexes are stored in the

file as two-byte integers. The CGM device driver uses 16 bits to represent

color indexes

Maximum Color Index Specifies the largest color index stored in the file. This value is the number of

color entries for the application output color table. The maximum color index

is 255.

Color Value Extent Specifies the range of RGB values contained in the color table. These are

multiplied by 1000 before stored as integers in the file. All color values in the

CGM file are integers in the range from 0 to 1000. The parameters are a

minimum direct color value (0,0,0) and a maximum direct color value

(1000,1000,1000).

Metafile Element List Specifies all of the elements that are used in the CGM file. This list enables

the CGM interpreter to check the elements before translating the file. All

elements contained in this list are described in the following sections:

Picture Descriptor Elements

Picture descriptor elements describe the use of other picture elements.

 Scaling Mode Defines the meaning of the virtual device coordinate (VDC) system of the

CGM metafile. Two parameters are required. The first specifies the mode,

which is either abstract or metric. The graPHIGS API generates metafiles with

a scale mode of metric. The second parameter is the metric scale factor which

specifies the distance in millimeters in the displayed picture corresponding to

one VDC.

If you have not altered the plot size by using escape 1003 (GDF/CGM plot

size), then the graPHIGS API computes the scale factor by dividing the

maximum display area in meters (0.2582728) by the maximum display area in

address units (960). Thus, the default metric scale factor is 0.269034. If you

have modified the plot size, then the plot size you supplied is used in place of

the maximum display area in meters.

Color Selection Mode Specifies the color selection mode. The graPHIGS API uses indexed color

selection mode. The application output color table is stored in the CGM file

and then indexed with a 16-bit integer.

Line Width Specification Mode Specifies the line width mode. The CGM device driver uses only an absolute

line width.

Marker Size Specification Mode Specifies the marker size mode. This parameter is included in the CGM

metafile element list but is irrelevant because the marker primitive is not used

by the CGM device driver.

Edge Width Specification Mode Specifies the edge width mode. The CGM device driver uses only an absolute

edge width specification mode.

VDC Extent Defines the range of virtual device coordinates (VDC). The CGM device driver

stores device coordinates in IEEE floating-point format in the range of 0.0 to

960.0.

Background Color Specifies the background color. The CGM device driver sets the value to

(0,0,0).

50 The graPHIGS Programming Interface: Technical Reference

Control Elements

The following control elements are used by the CGM device driver:

 Virtual Device Coordinate

(VDC) Real Precision

Specifies the precision for the real numbers. The CGM device driver stores

device coordinates as 32-bit floating-point numbers with 9 bits for the

exponent and 23 bits for the fraction. This is stored in IEEE floating-point

format. The VDC real precision parameter value is 0,9,23.

Clip Rectangle The clip rectangle defines a rectangular area. The CGM interpreter should

clip primitives within this rectangular area. The clip rectangle primitive

appears once for each view represented in the picture. For each view

represented that has view clipping set to 2=ON, the clip rectangle parameters

are at the lower right and upper left corner of the view boundaries and are

translated to the output metafile device coordinate system. For each view

with clipping set to 1=OFF, the clip rectangle parameters are the extent of the

virtual device coordinate system (0,0), (960,960).

Clip Indicator The clip indicator is used to indicate to the interpreter that it should perform

clipping to the inside of the rectangular area specified by the clip rectangle.

Clipping is always set to 2=ON.

CGM Elements for Graphical Primitives

The following CGM elements are used by the CGM device driver:

 Polyline The polyline primitive is used to represent polylines, disjoint polylines, nurbs,

view borders, geometric text and polymarkers, and in some cases circles,

circular arcs, ellipses, and elliptical arcs (see under ELLIPSE and

ELLIPTICAL ARC below).

Polymarker The polymarker primitive is not used by the device driver to represent any

picture information, but is included in the CGM metafile elements list.

Text The text element is used to represent annotation text in the CGM file.

Geometric text is stroked using the POLYLINE element.

Polygon Set Polygons are represented by using polygon set. Some interpreters do not

support this element.

Cell Array The device driver uses this element to support pixel primitives (GPPXL2 and

GPPXL3). However, ISO PHIGS cell arrays (pcell_array) are represented as

polygon sets.

Rectangle In previous releases this element was used for view shields and view borders.

It is no longer used. Polygon set is used for view shields and polylines are

used for view borders.

Ellipse The ellipse primitive is used to represent circles and ellipses whenever

possible in the CGM file. However, circles and ellipses are stroked with the

polyline element if any of the following conditions are true:

v The workstation is not a CGM workstation.

v The projection type is 2=PERSPECTIVE.

v The line type rendering is 2=SCALED_TO_FIT_RENDERING.

v The line type is not a supported CGM line type. 5=LONG_DASH and

6=DOUBLE_DOT must be stroked.

v The line representation table has been modified by the application.

v The view is obscured by a higher priority view with shielding 2=ON.

Chapter 2. Supported Workstations 51

Elliptical Arc The ellipse primitive is used to represent circular arcs and elliptical arcs

whenever possible in the CGM file. However, circular arcs and elliptical arcs

are stroked with the polyline element if any of the following conditions are

true:

v The workstation is not a CGM workstation.

v The projection type is 2=PERSPECTIVE.

v The line type rendering is 2=SCALED_TO_FIT_RENDERING.

v The line type is not a supported CGM line type. 5=LONG_DASH and

6=DOUBLE_DOT must be stroked.

v The line representation table has been modified by the application.

v The view is obscured by a higher priority view with shielding 2=ON.

Attribute Elements

CGM Line Attributes

The CGM device driver represents line attributes as follows:

CGM Line Type

The graPHIGS API CGM device driver represents the graPHIGS API line types in the CGM

metafile as follows:

 Table 9. CGM Line Types

graPHIGS API line types CGM representation Result

1 1 SOLID_LINE

2 2 DASHED

3 3 DOTTED

4 4 DASHED_DOT

7 5 DASH_DOUBLE_DOT

Note: If the line representation table is modified or accurate line types (scaled-to-fit) are selected, then the line types

are stroked.

Lines types 5=LONG_DASH and 6=DOUBLE_DOT are always stroked.

Line Width

The graPHIGS API CGM device driver stores the graPHIGS API line widths in IEEE floating-point

format. The nominal line width is equivalent to 1/1000 of the default display surface area (0.96 in

virtual device coordinates if the plot size has not been modified).

Line Color

The graPHIGS API CGM device driver represents line color as integers in the range of 0 to 255

(the maximum color index value). This integer is used by the interpreter as an index into the color

table.

CGM Marker Attributes

 Marker Type, Marker Size, Marker Color The graPHIGS API CGM device driver represents the

graPHIGS API markers in the output CGM metafile as a

series of polylines. Therefore, these attribute elements are

not used.

CGM Interior Attributes

The CGM device driver represents interior attributes as follows:

52 The graPHIGS Programming Interface: Technical Reference

Interior Style

The graPHIGS API CGM device driver represents the graPHIGS API interior styles in the CGM

metafile as follows:

 Table 10. Interior Style

graPHIGS API interior style CGM representation Result

1 0 HOLLOW

2 1 SOLID

3 2 PATTERN

4 3 HATCH

5 4 EMPTY

Fill Color

The graPHIGS API CGM device driver represents interior as an integer in the range of 0 to 255

(the maximum color index value). This integer is used by the interpreter as an index into the color

table.

Fill Reference Point

The graPHIGS API CGM device driver always uses the default fill reference point. This element is

included in the CGM metafile element list but is not used.

Hatch Style

The graPHIGS API CGM device driver represents the graPHIGS API hatch styles in the CGM

metafile as follows:

 Table 11. Hatch Styles

graPHIGS API hatch style CGM representation Result

1 2 Vertical lines

2 1 Horizontal lines

4 3 Diagonal lines (positive slope; lower

left to upper right 45[default], medium

spacing)

6 4 Diagonal lines (negative slope; lower

right to upper left 135[default],

medium spacing)

Note: No other hatch styles are supported. Other hatch style values default to the graPHIGS API hatch style 1

(vertical lines) and CGM hatch style 2 (vertical lines).

Pattern Table

When you open a workstation, the CGM workstation stores the default pattern tables in the CGM

file.

Pattern Index

The graPHIGS API CGM device driver represents pattern index as 16-bit integers in the range of 0

and 10.

Pattern Size

The graPHIGS API CGM device driver always uses the default pattern size. This element is

included in the CGM metafile element list but is not used.

CGM Text Attributes

The CGM device driver represents annotation text attributes as follows:

 Text Path The graPHIGS API CGM device driver uses the following text path 0=RIGHT,

1=LEFT, 2=UP, 3=DOWN.

Chapter 2. Supported Workstations 53

Text Alignment The graPHIGS API CGM device driver always uses the default text

alignment. This element is included in the CGM metafile element list but is

not used.

Text Precision The graPHIGS API CGM device driver represents text precision as integers.

Text precision affects annotation text only.

Text Font Index The graPHIGS API CGM device driver always uses the default text font

index. This element is included in the CGM metafile element list but is not

used.

Text Color The graPHIGS API CGM device driver represents text color as integers in the

range of 0 to 255 (the maximum color index value). Text color affects

annotation text only. This integer is used by the interpreter as an index into

the color table.

Character Set Index The graPHIGS API CGM device driver always uses the default character set

index. This element is included in the CGM metafile element list but is not

used. Character set index affects annotation text only.

Character Orientation The graPHIGS API CGM device driver represents the base vector always at

a right angle to the up vector. Character orientation affects annotation text

only.

Character Spacing The graPHIGS API CGM device driver represents the graPHIGS API

character spacing in IEEE floating-point format. Character spacing affects

annotation text only.

Character Expansion Factor The graPHIGS API CGM device driver represents the graPHIGS API

character expansion factor in IEEE floating-point format. Character expansion

affects annotation text only.

Character Height The graPHIGS API CGM device driver represents the graPHIGS API

character spacing in IEEE floating-point format. Character height affects

annotation text only.

CGM Edge Attributes

The CGM device driver represents edge attributes as follows:

Edge Type

The graPHIGS API CGM device driver represents the graPHIGS API edge types in the CGM

metafile as follows:

 Table 12. Edge Types

graPHIGS API edge type CGM representation Result

1 1 SOLID_LINE

2 2 DASHED

3 3 DOTTED

4 4 DASHED_DOT

7 5 DASH_DOUBLE_DOT

Note: No other edge types are supported. They default to edge type 1=SOLID_LINE.

Edge Width

The graPHIGS API CGM device driver represents the graPHIGS API edge widths in IEEE

floating-point format. The nominal line width is equivalent to 1/1000 of the display surface area

which is 0.96 of the virtual device coordinates if the plot size has not been modified.

Edge Color

The graPHIGS API CGM device driver represents edge color as an integer in the range of 0 to

255 (the maximum color index value). This integer is used by the interpreter as an index into the

color table.

54 The graPHIGS Programming Interface: Technical Reference

Edge Visibility

The graPHIGS API CGM device driver uses this attribute to indicate whether or not the polygon

edges are drawn. It can be either 0=OFF or 1=ON.

CGM Color Attributes

The CGM device driver represents color attributes as indexes into the color table.

 Color Table The first parameter is the starting color table index. It is always zero.

The second parameter is a list of 255 direct color values where each color value

consists of 3 color components (red, green, and blue). Each component is a 16-bit

integer in the range 0-1000.

Conformance

If an application places a CGM element in a file and that element is not included in the Metafile Element

List, then the CGM file is no longer considered to conform to standard.

Full Conformance

If an application does not use GPES escape (1014) or GPWDO, and the application explicitly closes the

CGM workstation, then the result is a CGM metafile fully conforming to ANSI X3.122-1986 as defined in

section 7.3 of that document.

Metafile Interpreters

ANSI X3.122 does not define conformance for a metafile interpreter. Not all CGM interpreters support all

CGM elements defined by the specification. For example, the graPHIGS API can generate polygon sets

with multiple partitions, however, many commercial interpreters do not support polygon set. The graPHIGS

API does not generate any CGM elements that are not included as part of the Drawing Plus control Set

defined in section 4.3.2.2 of the ANSI Specification. See General Output Facilities for a list of metafile

elements that the graPHIGS API does generate.

Workstation Dependent Output

The Escape (GPES) subroutine and the Workstation Dependent Output (GPWDO) subroutine allow an

application to directly pass binary data to be included in the resultant CGM file. The escape allows the

inclusion of control or other non-graphical data outside of a picture such as messages, application data,

and escapes.

The GPWDO subroutine allows the insertion of binary data into a structure for inclusion into a CGM file

along with other graPHIGS API generated CGM elements. Both the GPES (1014) escape and the

GPWDO subroutines require that you specify the total length of the data being supplied to the graPHIGS

API, independently of the encoded length field contained within the CGM element header.

Interpretation of CGM Data

All data is assumed to be a valid CGM binary encoded element. Both the long form and short form of the

headers are valid. There is a 64K limit on the amount of data that can be passed via the nucleus

connection. The output is always a single partitioned CGM element. No attempt is made to validate the

class and element identifier within the CGM header, however, the length check is performed to insure that

an interpreter can continue processing after encountering an unsupported or unrecognized CGM element

in a metafile.

How the length is checked

Two length values are processed by the graPHIGS API during a GPWDO subroutine or a GPES escape

1014 for the CGM workstation. One is the DATALENGTH, the total length of the data supplied by the

application. For GPWDO, this is the value of the length parameter supplied by the application. For GPES,

Chapter 2. Supported Workstations 55

this is equal to the lidr parameter (length of data record) minus 16, the fixed size of the idr (input data

record). Additionally, the CGM element must contain an ENCODED PARAMETER LIST LENGTH (see

Element Header and Element Data).

If the DATALENGTH is less than the minimum two-byte CGM element size, then error 2050 is returned

and no output is written. Error 2050 is also returned when the DATALENGTH is less than four bytes and

the ENCODED PARAMETER LIST LENGTH indicates a long form header, because in this case insufficient

data is available for a valid long form CGM header.

If the DATALENGTH is greater than 32767+4, which is the largest amount of data that can fit in a single

partition, plus the size of a long form header, then error 2051 is returned and no output data is written.

Otherwise, the short form ENCODED PARAMETER LIST LENGTH is checked. If this is a hex 0x1F value,

then the element has a long form header and the long form ENCODED PARAMETER LIST LENGTH is

used. If the sum of the ENCODED PARAMETER LIST LENGTH, added to the size of the header (two

bytes for short form and four bytes for long form,) is not equal to the DATALENGTH, then error 2052 is

returned and processing continues. The amount of data written to the file is equal to the size of the

element header plus the ENCODED PARAMETER LIST LENGTH. Excess Data supplied by the

application is ignored.

If the DATALENGTH is less than the sum of the ENCODED PARAMETER LIST LENGTH plus the size of

the CGM element header, then application-supplied data equal to the DATALENGTH is written to output

and the element is padded with 0’s until the amount of data written is equal to the ENCODED

PARAMETER LIST LENGTH plus the size of the CGM element header.

CGM Summary

v No verification other than encoded length checking is performed.

v Elements with a data length not long enough to include a valid length are rejected.

v Elements with a data length longer than a single partition length are rejected.

v Maximum data length is 32771 based on maximum single partition size and size of largest header

(32767+4).

v Multiple partitions are not supported.

v Elements with data length unequal to encoded length plus header size are padded/truncated to encoded

length.

Other Considerations for CGM

Partitioned Data Less than 32K Not Supported

Although the graPHIGS API does not support partitioned parameter data, partitions can be any size

smaller than 32K. It is possible for an element with multiple partitions to pass the length test. The

graPHIGS API always sets the partition bit to zero (last partition). This means that only the first of multiple

partitions would be written to the CGM file. The rest would be truncated.

Clipping

Because the graPHIGS API is unable to determine the nature of the graphical objects created through

these subroutines, no attempt is made to clip any of the objects.

Using GPWDO to Modify Attributes

If you intend to use GPWDO to modify attributes in the CGM file, it is important to understand how

attributes are actually placed in the file. You should be familiar with the ANSI standard for CGM. The

graPHIGS API CGM file does not necessarily resemble the contents of graPHIGS API structure store. For

instance, attributes are not placed into the file by the device driver until a primitive dependent on them is

written. They are not placed into the file unless they have been changed since the last graPHIGS API

output using that attribute. Additionally, several graPHIGS API primitives may map to a single CGM

primitive. For example, geometric text and polylines are both drawn as lines. Both rely on the line

attributes in the CGM file.

56 The graPHIGS Programming Interface: Technical Reference

For example, if you want to use GPWDO to change the line width used to stroke geometric text but the

last line width output to the CGM file (for an arc, a polyline, etc.) is not equal to the nominal line width

(scale factor of 1) used to stroke geometric text, then the device driver places another line width attribute

into the CGM file, overriding the GPWDO. To ensure that the line width is not output with the text, it is

necessary to insure that the line width set into the file is equal to the device drivers internal text line width

scale factor setting (1.0). This can be accomplished by inserting a GPLWSC with a scale factor of 1.0 into

the structure, followed by a GPPL2. The GPLWSC subroutine must be followed by a line primitive

because the line width attribute is not output until a line primitive that is dependent on it is output. The

graPHIGS API’s internal representation of the current line width is not updated until the attribute is output.

The line can be specified as zero length or in background color to prevent its display. Likewise, if a line

width is changed in the CGM file it does not necessarily reset to its previous value simply by inserting

GPLWSC into the structure. If the linewidth provided to GPLWSC is the same as th e last value the device

driver wrote to the file, then it does not output it again.

Restrictions

v Data must be at least two bytes long.

v Data must have a valid CGM parameter list length.

v Only single partition elements are allowed. If the continuation bit in the length field is set it is cleared to

zero.

v A length greater than a single partition maximum is not allowed.

v If an application makes an escape call before the first update workstation, the CGM file does not begin

with a Begin Metafile Order and is not in conformance. This file may fail to work with many interpreters

currently available.

v The metafile elements list is incorrect if any elements that are not normally used by the graPHIGS API

are inserted into the file.

v Applications are responsible for ASCII/EBCDIC conversion and IEEE/S370 floating-point conversion.

The Convert Data (GPCVD) subroutine may be used to facilitate this process.

The IMAGE Workstation

Overview

The IMAGE workstation is an output only workstation that provides a means for capturing and storing

image data in a form which can be processed by other applications. These images are in a raster format

and are stored as a color bitmap. This allows pictures, generated using advanced rendering functions such

as lighting, shading and hidden line and hidden surface removal, to be stored on a disk file. The advanced

rendering functions exceed the line drawing capability of vector image formats such as CGM and GDF,

which store pictures as lines and filled areas.

Note: The IMAGE workstation is available on the operating system only.

The graPHIGS API generates the images by rendering into a ″virtual frame buffer″, or memory map. All

images are rendered using 24-bit color. The application can control the image resolution and the defined

display size and can select from several IMAGE formats. The graPHIGS API then renders into the frame

buffer at the appropriate size and resolution and creates a disk file according to the graphics image format

specified.

Output Formats

Three image formats can be produced by the graPHIGS API.

v Adobe Encapsulated PostScript Format at 12-bits per pixel (4-bits per color component using an RGB

color model). This is the default format.

v Adobe Encapsulated PostScript Format at 24-bits per pixel (8-bits per color component using an RGB

color model).

Chapter 2. Supported Workstations 57

v IBM’s Image Object Content Architecture (IOCA) Function Set 10 (FS10).

Use the IMAGEFMT procopt, IMAGEFMT (Image Output Format), to set the image output format to one of

the following:

PSl1_4BIT 4-bits per color component Adobe PostScript Language Level 1 (Default)

PSl1_8BIT 8-bits per color component Adobe PostScript Language Level 1

IOCA_FS10 1-bit per pixel Image Object Content Architecture.

Adobe PostScript Page Description Language

The Adobe PostScript Page Description Language is a page description language that includes some

advanced programming constructs. Pictures can be described in this language and stored in a file. This file

may be parsed and displayed by an application or device that interprets the Adobe PostScript Page

Description Language. For the purposes of this documentation, Adobe PostScript output devices will refer

to any device which includes a PostScript interpreter licensed from Adobe, or the Adobe Display PostScript

System. These devices, printers, displays and other applications, convert or post-process the image.

Language Levels

The Adobe PostScript language exists in different levels with extensions.

 Table 13. Adobe PostScript Language Levels

Level Description

Level 1 Level 1 is the smallest set of Adobe PostScript language operators that a

device, including PostScript software from Adobe Systems, will support. All

Adobe PostScript devices should support all the level one operators.

Extensions Extensions represent capabilities that have been added to Adobe PostScript

Level 1. For example, the PostScript language color operators.

Level 2 Level 2 function includes all of Level 1 and its extensions, as well as

additional functions.

Adobe Display PostScript System Adobe Display PostScript System is an additional set of operators that may

be included on top of Level 1, Level 1 plus extensions, or Level 2 support.

These operators are generally used in an interactive environment.

The graPHIGS API IMAGE output will only contain operators that are defined within PostScript Language

Level 1 with color extensions. The PostScript produced will contain Adobe PostScript language code that

emulates the color extensions on Level 1 devices when the extensions are not available. These files are

printable on any Adobe PostScript Level 1 device. See Printing Color PostScript Files on Black and White

Printers.

Adobe Encapsulated PostScript

Adobe defines several formats of PostScript Language programs. The graPHIGS API will create an Adobe

PostScript output in Encapsulated PostScript file format (ESPF). Each update workstation will store a

single picture or image into a unique file name (See Output Filenames). These pictures can be sent

directly to a Adobe PostScript output device or included into another Adobe PostScript language page

description. If the image is sent directly to an Adobe PostScript output device, it will be placed on the

device’s coordinate systems origin. This is usually the lower left hand corner for a PostScript device.

Color Representation

Adobe PostScript Level 1 language with color extensions represents color pixel data as 3 integer values.

These values represent the intensity of red, green, and blue in the pixel. This data is character encoded as

hexadecimal data (0F would be the value 16). Each 8-bits of pixel data require 2 bytes of character data to

be encoded. If a full 24-bit color image is to be stored in the output file, the image will require 6 bytes per

pixel. The graPHIGS API can store 8-bits for each color component into the image file or truncate it and

store the high order 4-bits of each component. This reduces the image storage requirements to 3 bytes

per pixel and reduces the number of shades of each color band from 255 to 16. If the advanced lighting

58 The graPHIGS Programming Interface: Technical Reference

and shading capabilities of graPHIGS are not being used and only flat shaded colors are displayed, we

recommend that you use the PSl1_4BIT option on the IMAGEFMT procopt described in IMAGEFMT

(Image Output Format) to reduce the size of the output PostScript file. However, if any type of continuous

tone shading is used, the available shades of color will be reduced and may result in the shaded portions

of the image appearing ″banded″.

Printing Color PostScript Files on Black and White Printers

Adobe PostScript language files produced by the graPHIGS API include Adobe PostScript language code

that inquires whether the output device supports the colorimage operator.

For devices that don’t support the colorimage operator, it is defined within the graPHIGS Adobe PostScript

Output language file as a function that combines the red, green, and blue values into a single gray value

according to the following ratio:

 .299 * Red + .586 * Green + .114 * Blue

The grayscale image is then displayed using the PostScript language image operator. If the PostScript

image was generated as 8-bits per color component, the resultant gray value will be 8-bits and have a

range of 255 shades of gray. If the PostScript image was generated as 4-bits per component, the resultant

gray value will be 4-bits and have a range of 16 shades of gray. The conversion to grayscale occurs at the

output device. The conversion involves a series of floating point operations and may take longer on

devices with only Level 1 support.

Color Model

The Adobe PostScript language supports several color models, including RGB and CMYK. Most printers

generate output using a CMYK model and halftoning techniques. The graPHIGS API rendering is done in

RGB color space. Accurate mapping to the output device’s color space is device dependent due to

differences in inking and other printer technologies. The output images are represented in RGB color

space and no assumptions are made about the output device. Adobe PostScript provides for the definition

of mapping functions that can be modified by the end user or replaced by the application developer to

account for differences in printer technology. If continuous tone is supported by the output device, color

reproduction may occur directly. Otherwise, shades of color are produced using halftoning techniques. The

Adobe PostScript language also provides functions to modify the halftoning. The effects of these functions

are device specific.

Default Coordinate System

The default coordinate system origin for the Adobe PostScript language is in the lower left hand corner of

the display area. Each device coordinate represents 1/72 of an inch. The X axis increments towards the

right and the Y axis increments towards the top of the display area. The graPHIGS API renders Adobe

PostScript language files using this default system. To modify this, see Processing graPHIGS EPS Files

Using sed.

Contents of graPHIGS PostScript Images

ESPF files created by the graPHIGS API are ASCII text Adobe PostScript page description language

programs. In addition to executable programs, functions and data, they contain comments to identify the

file and to facilitate modifying the displayed image. The program is organized into the following four

sections:

v Header

v Prolog

v Body

v Trailer

Chapter 2. Supported Workstations 59

Header

The header consists mainly of PostScript comments. Some of these comments may be processed as data

by other applications such as print spoolers or desk top publishing software. Most of these comments are

recommended or defined as part of the Adobe encapsulated PostScript format.

 %!PS-Adobe-2.0 EPSF-2.0

 %%BoundingBox: 0 0 612 792

 %%Creator: IBM graPHIGS API V2R2.4.0

 %%CreationDate: Thu Jul 8 15:22:07 1993

 %Bits Per Component: 4

 %%Title: Samp0001.ps

 %%EndComments

 save

 gsave

%!PS-Adobe-2.0 EPSF-2.0

Line 1 identifies the file as conforming to the Version 2 Adobe Encapsulated Postscript Format.

%%BoundingBox: 0 0 612 790

Line 2 defines a bounding box that encloses the entire image. The units used are printer points or 1/72ths

of an inch. The values represent the lower left and upper right corners of the bounding box. Since the

entire display area is initialized to color table entry 0, the graPHIGS API defines the bounding box to be

the entire workstation display area. The workstation display area can be modified using the DCMETERS

procopt described in DCMETERS (Device Coordinate Meters).

save gsave

These two commands save the state of the Adobe PostScript processing device prior to execution of the

file so that it can be restored after the EPS file has been processed.

Prolog

The prolog is bracketed by the %%Begin Prolog and %%End Prolog comments. It consists of code that

tests for the existence of the colorimage operator and emulates this operator if it doesn’t exit.

Body

The body consists of Adobe PostScript language code that defines the location and orientation of the

image on the output device, code to read and display the image, and the image data. In addition,

%GPMODxxxx comments have been added, where xxx is a particular function. This allows you to use sed

to post-process the image if you are going to print it directly. See Processing graPHIGS EPS Files Using

sed for details.

Trailer

The trailer consists of:

v a grestore command that restores the graphics state

v a %GPMODTRAILER comment allows sed to be used to insert some postprocessing if desired

v a showpage command that displays the image when sent to an output device

v a restore command that resets global memory.

Processing graPHIGS EPS Files Using sed

If an application sends graPHIGS EPS files directly to an output device, it may be desirable to modify the

files to change the orientation of the picture with regard to location and scale. graPHIGS EPS files contain

ASCII characters and can be edited using any text editor. Due to the large size of most images, this is

generally not practical. To facilitate using the sed command as a filter for modifying these files, comments

in the form %GPMODxxxx have been placed in the file at appropriate locations to provide targets for the

sed command. Here are some examples of using sed to modify the file:

v Trimming the image:

This example uses sed to insert a clipping command in place of the %GPMODCLIP comment.

60 The graPHIGS Programming Interface: Technical Reference

sed s/%GPMODCLIP/"newpath 100 100 moveto\

 100 200 lineto\

 200 200 lineto\

 200 100 lineto\

 closepath clip"\

This causes the image to be clipped to a rectangle, bounded by the points (100,100), (100,200),

(200,200), (200,100), when displayed.

v Translating the image to a new origin:

This example uses sed to insert a translate command in place of the %GPMODTRANSLATE comment.

sed s/%GPMODTRANSLATE/"100 100 translate"/

This causes the lower left hand corner of the image to be displayed at location (100,100) on the output

device.

v Scaling the image:

This example uses sed to insert a scale command in place of the %GPMODSCALE comment.

sed s/%GPMODSCALE/".5 .5 scale"/

This causes the image to display at 1/2 the size specified by the DCMETERS procopt described in

DCMETERS (Device Coordinate Meters).

v Adding other objects to the image:

This example uses sed to insert graphical objects in place of the %GPMODTRAILER comment.

sed s/%GPMODTRAILER/"\.5 setgray \

 \/Helvetica findfont 15 scalefont setfont \

 100 100 moveto (graPHIGS IMAGE) show"/

This displays the text ″graPHIGS IMAGE″ at location (100,100) along with the image.

v Converting an image to reverse video:

This example uses sed to replace the %GPGSMOD comment with the command which will covert an

image to reverse video. The comment will only appear in 8-bit per component files. With 8-bit drawings,

you can modify the grayscale values to convert to reverse video on black and white printers.

sed s/%GPGSMOD/255 exch sub/

IOCA Function Set 10 (FS10)

The graPHIGS API can generate files that conform to IBM’s Image Object Content Architecture FS10

specification. The rendered image will be converted to a 64 level grayscale according to the NSTC video

standard. IOCA FS10 describes bi-level (black and white only) images. In order to support 64 shades of

gray, each pixel will be halftoned in the output file using an 8 by 8 block of black or white dots. The order

in which the dots in the halftone cell are blacked is represented by the following matrix. If the value of the

pixel, after converting to grayscale, is less than or equal to the value in the matrix, the corresponding dot

in the halftone cell is printed black, otherwise it is printed white.

 0, 48, 12, 60, 3, 51, 15, 63,

 32, 16, 44, 28, 35, 19, 47, 31,

 8, 56, 4, 52, 11, 59, 7, 55,

 40, 24, 36, 20, 43, 27, 39, 23,

 2, 50, 14, 62, 1, 49, 13, 61,

 34, 18, 46, 30, 33, 17, 45, 29,

 10, 58, 6, 54, 9, 57, 5, 53,

 42, 26, 38, 22, 41, 25, 37, 21

Output Filenames

The IMAGE workstation uses the connection identifier, which the application can select, to derive the

output filename. The connection identifier must be a valid file name which may include a full or relative

pathname. Upper and lower case characters are valid. If the optional pathname is not specified, the file will

be created in the current directory. The optional pathname is stripped from the connection identifier and

the first five characters from the resulting file name are concatenated with a three digit number in the

range 001-999. If any of these characters are blank, they are replaced with a fill character. An ″X″ replaces

Chapter 2. Supported Workstations 61

a blank first position character, and a ″0″ replaces any other blanks between the second and fifth

positions. A filename extension, which indicates the format of the output file, is added to the filename.

A new file is generated each time the IMAGE workstation is updated. When a new file is created, the

number represented by the last three characters in the file is increased by one. If this number exceeds

999, it is reset to 001. A new file will overwrite an existing file of the same name. Therefore, a maximum of

999 different files can be generated during a session.

If an application specifies ’ABC ’ as the connection identifier for an IMAGE workstation with PSl1 format,

the files created on successive workstation updates will be:

 Table 14. Example Filenames

UPDATE NUMBER FILENAME

1 ABC00001.PS

2 ABC00002.PS

3 ABC00003.PS

. .

. .

999 ABC00999.PS

1000 ABC00001.PS

1001 ABC00002.PS

Image Size and Resolution

The graPHIGS API provides procopts to modify the display area and the resolution of the IMAGE

workstation. The best combination of resolution and size depends on the target output device.

Modifying the Defaults

Use the DCMETERS procopt described in DCMETERS (Device Coordinate Meters) to modify the display

size. The size must be greater than 0 along both axes. The graPHIGS API does not impose maximum

values for the display areas. Actual limits are device dependent. The default display area is 0.2157 meters

in width by 0.2794 meters in length. This translates to 8.493 inches by 11 inches which will fit within the

8.5 x 11 inches of a letter sized page. This may require modification if the output device imposes

boundaries.

Use the DCUNITS procopt described in DCUNITS (Device Coordinate Address Units), to specify an image

resolution in total number of pels along the X and Y axes. The minimum value for each axis is 8 pels. The

maximum value is 4096 pels. The default is 637 pels along the X axis and 825 pels along the Y axis,

which translates into a pel density of 75 pels per inch when the default value DCMETERS (Device

Coordinate Meters) is used.

Selecting Resolution

The choice of image resolution may dramatically affect the appearance of the displayed image.

Appropriate values will vary depending upon the target output device. If the image resolution is too low, the

picture will display with a tile appearance. If the resolution exceeds that of the output device, the output file

will be very large. Also, since the output device will have to combine several image pixels into a single

device pixel, small objects in the image may appear distorted, and thin lines may appear dashed. Nominal

values, such as line width and polymarker size, are defined as functions of pixel size. A resolution that is

higher than that of the output device may cause some lines and objects to be rendered in a sub-pixel

scale and these objects may not display.

Printer resolutions vary, but typical values are 240, 300, 480 and 600 dots per inch (dpi). Many IBM

devices will be 240 or 480 dpi while most others will be 300 or 600 dpi. Since most printers will halftone to

62 The graPHIGS Programming Interface: Technical Reference

produce shades and blends of color, the ideal image resolution will generally be lower than that of the

output device. The default of 75 dpi was chosen to allow a 4x4 dot halftone cell on a 300 dpi printer or a

8x8 dot halftone cell on a 600 dpi printer.

Chapter 2. Supported Workstations 63

64 The graPHIGS Programming Interface: Technical Reference

Chapter 3. Workstation Description Tables

The following tables contain default values for the graphic workstations and adapters based on a:

v 23 inch display for the X workstation

v 23 inch display for the 6090 workstation

v 19 inch display for the 5080 workstation

(The size of the displays is determined by the diagonal measurement of the screen.)

The right-hand column in the tables lists the subroutine that you can use when you want your application

to know the value for the facility.

The data types of the returned values are identified by the following codes:

 Data Type Definition

I Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is defined by enumerating the

identifiers denoting the values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) [default] t (data type) indicates a collection of data of that type. This can

be indicated in one of two ways:

1. By using notation such as 3[default]R (three real numbers), which could specify something like

the x, y, and z coordinates of a three-dimensional point or RGB values

2. By using a variable number such as n[default]I, which specifies a collection of n integers.

The values identified with the symbol * reflect the default value of a workstation configuration variable; that

is, this may not be the value of the variable in the actual workstation description table after the workstation

is opened. See Advanced Concepts for a discussion of this concept.

Some tables are preceded by workstation-dependent and/or adapter-specific information.

The tables in this section are arranged in this order:

 General Workstation Facilities

General Output Facilities

Polyline Facilities

Polymarker Facilities

Text Facilities

Interior Facilities

Edge Facilities

Color Facilities

Generalized Drawing Primitive (GDP) Facilities

Generalized Structure Element (GSE) Facilities

Escape Facilities

Image Facilities

Advanced Output Facilities

Curve and Surface Facilities

Advanced Attribute Facilities

General Input Facilities

Available Triggers

© Copyright IBM Corp. 1994, 2002 65

Locator Devices

Stroke Devices

Valuator Devices

Choice Devices

Pick Devices

String Devices

Button Devices

Scalar Devices

Vector Devices

Break Action

General Workstation Facilities

All Workstations

v The maximum display surface size changes with various display hardware. Use the Inquire Maximum

Display Surface Size (GPQDS) subroutine to obtain the maximum display surface of your workstation

(in device coordinate units and address units).

v The default number of views is 16. The number of views can be increased via the View Table Entries

(VWTBLSZ) procopt. See VWTBLSZ (View Table Entries). Use the Inquire Workstation Configuration

Variability (GPQWCV) subroutine to obtain the maximum number of definable view table entries.

v If the Inquire Rendering Target (GPQART) subroutine returns a value of zero for the number of

rendering targets, then the specified workstation does not support explicit traversal.

X

General Information Applying to All Adapters

v The LANG environment variable determines the primary character set. For more information on primary

character sets, see Opening the X Workstation. Use the Inquire Primary Character Set (GPQCS)

subroutine to obtain the primary character set identifier for the specified workstation type.

v Explicit traversal control is supported. If the workstation is in single buffer mode, then the Inquire

Rendering Target (GPQART) subroutine returns a value of one for the number of available rendering

targets. If the workstation is in double buffer mode, the GPQART returns a value of two for the number

of available rendering targets.

Direct Window Access(DWA) Adapters

v DWA Adapters include the POWER GXT6500P, POWER GXT4500P, POWER GXT6000P, POWER

GXT4000P, POWER GXT3000P, POWER GXT2000P, POWER GXT1000P, POWER GXT1000, POWER

GXT800P, POWER GXT800M, POWER GXT550P, POWER GXT500P, POWER GXT500D, and

POWER GXT500.

 The POWER GT4 Family and POWER GTO are also DWA Adapters but their general capabilities may

differ from the others listed above.

 The POWER GXT250P can only support DWA in 8-bit color mode with a maximum 1024x768 display

resolution. The POWER GXT255P can only support DWA in 8-bit color mode.

Softgraphics graPHIGS (XSOFT) Adapters

XSOFT Adapters include the POWER GXT300P, POWER Gt1x, POWER GXT100, POWER Gt3i, and the

Color Graphics Display Adapter. The POWER GXT255P and POWER GXT250P also support XSOFT in all

color modes greater than 8-bit, and the POWER GXT250P in all display resolutions greater than

1024x768.

XLIB (non-DWA) Adapters

The graPHIGS API may be available on additional 2D adapters via the XLIB interface.

66 The graPHIGS Programming Interface: Technical Reference

6090 and 5080

v Primary character sets depend on the hardware configuration of your workstation. For information on

how to customize your workstation, see The GDDM/graPHIGS Programming Interface: Installation and

Problem Diagnosis.

IMAGE

v You can set the width and height of the display device in Device Coordinate address units via the

Device Coordinate Address Units (DCUNITS) procopt.

v You can set the width and height of the display device in Device Coordinate meters via the Device

Coordinate Meters (DCMETERS) procopt.

v For more information on setting the width and height with the display device, see The IMAGE

Workstation.

GDF

v Characteristics of the 3270-PC/GX are assumed for the target display device. For more information, see

The GDF Workstation.

v You can change the size of the display area using the Escape (GPES) subroutine (Escape 1003:

GDF/CGM Plot Size). However, the Inquire Maximum Display Surface Size (GPQDS) does not reflect

this change.

CGM

v Characteristics of the 3270-PC/GX are assumed for the target display device. For more information, see

The CGM Workstation.

v You can change the size of the display area using the Escape (GPES) subroutine (Escape 1003:

GDF/CGM Plot Size). However, the Inquire Maximum Display Surface Size (GPQDS) does not reflect

this change.

 Table 15. General Workstation Facilities - X Workstation Default Values

General Workstation

Facilities

Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Workstation category

(1=OUTPUT,

2=INPUT,

3=OUTIN)

E OUTPUT OUTIN OUTIN OUTIN OUTIN GPQWC

[type]

Device coordinate unit

(1=METERS,

2=OTHER)

E METERS METERS METERS METERS METERS GPQDS [units]

Maximum display surface

size in device coordinate

units

3[default]R 0.215, 0.279,

0.215*

0.425, 0.340,

0.425*

0.425, 0.340,

0.425*

0.425, 0.340,

0.425*

0.425, 0.340,

0.425*

GPQDS

[csize]

Chapter 3. Workstation Description Tables 67

Table 15. General Workstation Facilities - X Workstation Default Values (continued)

General Workstation

Facilities

Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Maximum display surface

size in address units

3[default]I 637, 825, 637* 1280, 1024,

1280*

1280, 1024,

1280*

Exceptions

POWER

GXT6500P,

POWER

GXT4500P,

POWER

GXT6000P,

POWER

GXT4000P,

POWER

GXT2000P:

1600, 1200,

1280*

POWER

GXT250P:

1024, 768,

1024*

1280, 1024,

1280*

or

1024, 768,

1024*

1280, 1024,

1280*

GPQDS

[asize]

Number of definable view

table entries2

I 63* 63* 63* 63* 63* GPQWCV

[number]

Primary character set I 8* 8* 8* 8* 8* GPQPCS

[csid]

Number of available

rendering targets

I 1 2* 2* 1 or 2* 1 GPQART

[totnum]

Notes:

1.

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2.

2 Entry 0 cannot be modified.

* See the text prior to this table for more information.

 Table 16. General Workstation Facilities

General Workstation

Facilities

Data Type 6090 5080 GDDM GDF CGM Inquiry

Workstation category

(1=OUTPUT,

2=INPUT,

3=OUTIN)

E OUTIN OUTIN OUTIN OUTPUT OUTPUT GPQWC [type]

Device coordinate unit

(1=METERS,

2=OTHER)

E METERS METERS METERS METERS METERS GPQDS [units]

Maximum display surface size

in device coordinate units

3[default]R 0.425, 0.340,

0.425*

0.28448,

0.28448,

0.28448*

0.24682,

0.17574,

0.24682*

0.2582728,

0.2582728,

0.2582728*

0.2582728,

0.2582728,

0.2582728*

GPQDS [csize]

Display surface size in

address units

3[default]I 1280, 1024,

1280*

1024, 1024,

1024*

720, 384, 720 960, 960, 960 960, 960, 960 GPQDS [asize]

Number of definable view

table entries1

I 63* 63* 63* 63* 63* GPQWCV

[number]

Primary character set I 1* 1* 1 1 1 GPQPCS [csid]

Number of available

rendering targets

I 0 0 0 0 0 GPQART

[totnum]

Note:

1Entry 0 cannot be modified.

* See the text prior to this table for more information.

68 The graPHIGS Programming Interface: Technical Reference

General Output Facilities

X

General Information Applying to All Adapters

v Antialiasing is supported only for polyline primitives with nominal line width.

v BNIL (Before Next Input Locally) deferral mode is treated as BNIG (Before Next Input Globally) deferral

mode.

v Polygon with Data Primitives: The primitive supports optional data that indicates that the application

determined the convexity of the polygon. Specifying this optional data with the primitive definition

enables better performance because the system rendering code does not have to determine the

convexity of the polygon each time the polygon is rendered. To determine the convexity of a set of

polygons, the graPHIGS API on the RS/6000 contains a sample program under the operating system

directory:

/usr/lpp/graPHIGS/samples/convexcheck

v Component frame buffers have three components. Indexed frame buffers have one component.

v Pixel Primitives: The pixel primitive is not part of the PHIGS definition and needs special consideration

when using it on devices with frame buffers that are not eight bits deep. Because the pixel primitive only

specifies eight bits of pixel data, there is no clear method map those eight bits to frame buffers that

have other than eight bits of memory.

For frame buffers with component organizations (such as the 24-bit 3D adapter), the eight bits are

replicated into each component by the graPHIGS API. This normally produces grey-scale images, since

the same bits are put into each of the red, green, and blue frame buffer components.

To replicate the pixel data to each frame buffer component, use the Set Frame Buffer Write Protect

Mask (GPFBM) subroutine and the Pixel 2 (GPPXL2) subroutine three times, specifying that a different

component of the frame buffer be unprotected each time.

If, for example, you have a 24-bit component frame buffer and image data arranged in three groups for

red, green, and blue,

To write the red data:

GPFBM(0xff00ffff);

GPPXL2(red data);

To write the green data:

GPFBM(0xffff00ff);

GPPXL2(green data);

To write the blue data:

GPFBM(0xffffff00);

GPPXL2(blue data);

Restore write protect mask:

GPFBM(0x00000000);

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities applying to all adapters:

v Lighting, depth cueing and HLHSR (hidden line, hidden surface removal) are available.

v HLHSR (hidden line, hidden surface removal) can be applied to primitives by setting HLHSR to

2=ON_THE_FLY if z-buffer is installed.

v There is no polysphere tessellation limitation.

v POWER GTO (8 bit or 24 bit):

– HLHSR (hidden line, hidden surface removal) identifier 10 (NOT_EQUAL) is not supported. HLHSR

identifier 2 (VISUALIZE_IF_HIDDEN) applies only to line primitives.

Chapter 3. Workstation Description Tables 69

– Shading is enabled by setting depth cue mode to 2=ALLOWED or lighting calculation mode to

2=PER_AREA or 3=PER_VERTEX

– Transparency modes of 2=PARTIAL_TRANSPARENT and 3=BLEND are supported, however:

- When using 2=PARTIAL_TRANSPARENT mode, you must also have the lighting calculation mode set

to 2=PER_AREA or 3=PER_VERTEX (transparency mode 3=BLEND does not have this requirement).

- Concave Polygons, Composite Fill Areas, Trimmed NURB Surfaces, Polygons with edge flag set

to 2=ON, and Polygon with Data may be rendered using multiple passes. This multiple rendering

includes the 3=BLEND transparency processing. Therefore, some parts (such as shared edges)

show the results of this double-blending.

- Transparency processing is not face-dependent. The transparency coefficient from the front-face

surface properties (set by the Set Surface Properties (GPSPR) subroutine) is always used.

- Transparency processing is applied during the rendering of lines and geometric text, as well as

area primitives. To prevent lines and text from having transparency applied, the application can

reset the transparency coefficient before the line and/or text primitives.

– Antialiasing is supported, however:

- Antialiasing is not performed when any of the following facilities are also used to render the

polylines:

v HLHSR, depth cueing, transparency, or lighting

v Wide lines (line width scale factor other than 1.0)

v Line type other than 1=SOLID_LINE

v Scaled-to-fit line type rendering

v Polyline shading method of 2=POLYLINE_SHADING_COLOR

- Refer to the directory

/usr/lpp/graPHIGS/samples/antialiasing

for a sample of antialiasing.

- Antialiasing may degrade performance due to the additional processing involved. To control

degradation, two antialiasing modes are available: 2=SUBPIXEL_ON_THE_FLY and

3=NON_SUBPIXEL_ON_THE_FLY. 2=SUBPIXEL_ON_THE_FLY results in the highest quality rendering but

3=NON_SUBPIXEL_ON_THE_FLY is faster. For correct visual results, your application must use values

in the display color table that vary from 0.0 to 1.0 for each color component. For best results, your

application should use gamma-corrected color component values. (If you wish to initialize the

display color table with a linear ramp of color component values, you can use the Direct Color

(DIRCOLOR) procopt. See DIRCOLOR (Direct Color). The antialiasing facility is supported with 8-bit

and 24-bit pixel memory. Special consideration is needed for 8-bit pixel memory.

– Pixel data in obstructed window areas can be returned with unexpected results when read from the

frame buffer.

v POWER Gt4x (8 bit or 24 bit):

– Only transparency modes 1=NONE and 2=PARTIAL_TRANSPARENT are supported.

– Antialiasing is supported, however:

- Only antialiasing mode 2=SUBPIXEL_ON_THE_FLY is supported.

- Antialiasing is not performed when any of the following facilities are also used to render the

polylines:

v Wide lines (line width scale factor other than 1.0)

v Line type has depth cueing set to 2=ALLOWED (this limitation applies to POWER Gt4x 8 bit only).

- Refer to the directory

/usr/lpp/graPHIGS/samples/antialiasing

for a sample of antialiasing.

70 The graPHIGS Programming Interface: Technical Reference

- Antialiasing may degrade performance due to the additional processing involved. For correct

visual results, your application must use values in the display color table that vary from 0.0 to 1.0

for each color component. For best results, your application should use gamma-corrected color

component values. (If you wish to initialize the display color table with a linear ramp of color

component values, you can use the Direct Color (DIRCOLOR) procopt. See DIRCOLOR (Direct

Color). The antialiasing facility is supported with 8-bit and 24-bit pixel memory. Special

consideration is needed for 8-bit pixel memory.

XLIB (non-DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v Polysphere Primitives:

– The data generated by tessellation of polyspheres is limited to 65,000 bytes. If the generated data

exceeds this amount, then part of your polysphere will not be displayed.

XSOFT

v Antialiasing is supported only for polyline primitives with nominal line width.

v Lighting, depth cueing and HLHSR (hidden line, hidden surface removal) are available.

v There is no polysphere tessellation limitation.

6090

v BNIL (Before Next Input Locally) deferral mode is treated as BNIG (Before Next Input Globally) deferral

mode.

v Only HLHSR (hidden line, hidden surface removal) identifiers 1=VISUALIZE_IF_NOT_HIDDEN,

2=VISUALIZE_IF_HIDDEN, 3=VISUALIZE_ALWAYS, and 4=NOT_VISUALIZE are supported. HLHSR identifier 2

(VISUALIZE_IF_HIDDEN) applies only to line primitives.

v If you are using the optional shading feature:

– You can process geometrical data if the HLHSR (hidden line, hidden surface removal) is set to

2=ON_THE_FLY, or depth cue mode is set to 2=ALLOWED, or lighting calculation mode is set to

2=PER_AREA or 3=PER_VERTEX.

– Line width is not supported.

v If you are not using the shading feature (HLHSR is set to 1=OFF, depth cue mode is set to

1=SUPPRESSED, and lighting calculation mode is set to 1=NONE), then:

– line style defaults to 2=SOLID and no shading is performed, if polyline end type is set to 2=ROUND or

3=SQUARE.

– the boundary flags defined in some primitives are ignored.

v Transparency mode is only applied when transparency mode is set to 2=PARTIAL_TRANSPARENT in the

view table entry and lighting calculation mode is set to 2=PER_AREA or 3=PER_VERTEX.

5080

v Only the nominal line width scale for circle, arc, and ellipse GDPs are supported.

v Pixel Primitives and Attributes: Pixel elements cannot be clipped to viewport or window boundaries.

When a pixel element extends beyond a boundary, the element is replaced by a rectangle of the same

size that is filled with the highlighting color.

v The number of pixel color indexes in one pixel primitive is limited to approximately 32,000.

IMAGE

v Lighting, depth cueing and HLHSR (hidden line, hidden surface removal) are available.

v There is no polysphere tessellation limitation.

Chapter 3. Workstation Description Tables 71

GDF

v BNIL (Before Next Input Locally) deferral mode is treated as BNIG (Before Next Input Globally) deferral

mode.

v Polysphere Primitives: The data generated by tessellation of polyspheres is limited to 65,000 bytes. If

the generated data exceeds this amount, then part of your polysphere will not be displayed.

v Pixel Primitives: Pixel primitives are not supported.

CGM

v BNIL (Before Next Input Locally) deferral mode is treated as BNIG (Before Next Input Globally) deferral

mode.

v Polysphere Primitives: The data generated by tessellation of polyspheres is limited to 65,000 bytes. If

the generated data exceeds this amount, then part of your polysphere will not be displayed.

v For CGM metafile and picture descriptor element information, see Delimiter Elements. For graphical

primitives information, see CGM Elements for Graphical Primitives.

 Table 17. General Output Facilities - X Workstation Default Values

General Output Facilities Data Type IMAGE DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Display type (1=VECTOR, 2=RASTER, 3=OTHERS) E RASTER RASTER RASTER RASTER GPQWD [type]

Deferral mode (1=ASAP, 2=BNIG, 3=BNIL,

4=ASTI, 5=WAIT)

E WAIT WAIT WAIT WAIT GPQDDV

[defer]

Modification mode

(1=NO_IMMEDIATE_VISUAL_EFFECT,

2=UPDATE_WITHOUT_REGENERATION,

3=QUICK_UPDATE)

E NO_

IMMEDIATE_

VISUAL_

EFFECT

NO_

IMMEDIATE_

VISUAL_

EFFECT

NO_

IMMEDIATE_

VISUAL_

EFFECT

NO_

IMMEDIATE_

VISUAL_

EFFECT

GPQDDV

[modif]

Number of structure priorities supported I Cont.

range

supported2

Cont.

range

supported2

Cont.

range

supported2

Cont.

range

supported2

GPQNSP [npri]

Maximum hierarchical depth I 32 32 32 16 GPQHD

[depth]

Number of available class names I 1024 1024 1024 256 GPQNCN

[number]

Shielding support (NO, YES) E YES YES YES YES GPQVF

[shield]

Number of available HLHSR modes I 2 2 2 1 GPQHMO

[totnum]

HLHSR modes (1=OFF, 2=ON_THE_FLY) E OFF,

ON_THE_FLY

OFF,

ON_THE_FLY

OFF,

ON_THE_FLY

OFF GPQHMO

[mode]

Number of available antialiasing modes I 3 2*

 Exception

POWER GTO:

3*

2* 1 GPQAMO

[totnum]

Available antialiasing modes (1=OFF,

2=SUBPIXEL_ON_THE_FLY,

3=NON_SUBPIXEL_ON_THE_FLY)

E OFF,

SUBPIXEL_

ON_THE_

FLY,

NON_

SUBPIXEL_

ON_THE_

FLY*

OFF,

SUBPIXEL_

ON_THE_

FLY*

 Exception

POWER GTO:

OFF,

SUBPIXEL_

ON_THE_

FLY,

NON_

SUBPIXEL_

ON_THE_

FLY*

OFF,

SUBPIXEL_

ON_THE_

FLY,

NON_

SUBPIXEL_

ON_THE_

FLY*

OFF GPQAMO

[mode]

72 The graPHIGS Programming Interface: Technical Reference

Table 17. General Output Facilities - X Workstation Default Values (continued)

General Output Facilities Data Type IMAGE DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Number of available transparency modes I 4* 4*

 Exceptions

GT4 Family:

2*

POWER GTO:

3*

4* 1 GPQTMO

[totnum]

Transparency modes (1=NONE,

2=PARTIAL_TRANSPARENT,

3=BLEND,

4=BLEND_ALL)

E NONE,

PARTIAL_

TRANS-

PARENT,

BLEND,

BLEND_ALL*

NONE,

PARTIAL_

TRANS-

PARENT,

BLEND,

BLEND_ALL*

 Exceptions

GT4 Family

NONE,

PARTIAL_

TRANS-

PARENT*

POWER GTO

NONE,

PARTIAL_

TRANS-

PARENT,

BLEND

NONE,

PARTIAL_

TRANS-

PARENT,

BLEND,

BLEND_ALL*

NONE GPQTMO

[mode]

Frame buffer organization (1=COMPONENT,

2=INDEXED)

E COMPONENT 24 bit:

COMPONENT

8 bit: INDEXED*

24 bit:

COMPONENT

INDEXED GPQFBC [org]

Number of available frame buffer components I 3 24 bit: 3 8 bit: 1

24 bit: 3

1 GPQFBC [n]

List of bit depths for each frame buffer

component

n[default]I 8,8,8 24 bit: 8,8,8 8 bit: 8

12 bit: 4,4,4

24 bit: 8,8,8

8 GPQFBC

[depth]

Note:

1 See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2 Continuous range is supported but you will get a 0 back on inquiry.

* See the text prior to this table for more information.

 Table 18. General Output Facilities Default Values

General Output Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Display type (1=VECTOR,

2=RASTER, 3=OTHERS)

E RASTER RASTER RASTER OTHERS OTHERS GPQWD [type]

Deferral mode (1=ASAP,

2=BNIG, 3=BNIL, 4=ASTI,

5=WAIT)

E WAIT WAIT WAIT WAIT WAIT GPQDDV

[defer]

Modification mode (1=NO_

IMMEDIATE_ VISUAL_ EFFECT,

2=UPDATE_ WITHOUT_

REGENERATION, 3=QUICK_

UPDATE)

E NO_ IMMEDIATE_

VISUAL_ EFFECT

NO_

IMMEDIATE_

VISUAL_

EFFECT

NO_

IMMEDIATE_

VISUAL_

EFFECT

NO_

IMMEDIATE_

VISUAL_

EFFECT

NO_ IMMEDIATE_

VISUAL_ EFFECT

GPQDDV

[modif]

Number of structure priorities

supported

I Cont. range

supported1

Cont. range

supported1

Cont. range

supported1

Cont. range

supported1

Cont. range

supported1

GPQNSP [npri]

Chapter 3. Workstation Description Tables 73

Table 18. General Output Facilities Default Values (continued)

General Output Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Maximum hierarchical depth I 32 16 16 16 16 GPQHD

[depth]

Number of available class

names

I 1024 256 256 256 256 GPQNCN

[number]

Shielding support (NO, YES) E YES YES YES YES YES GPQVF

[shield]

Number of available HLHSR

modes

I 2 1 1 1 1 GPQHMO

[totnum]

HLHSR modes (1=OFF,

2=ON_THE_FLY)

E OFF, ON_ THE_

FLY

OFF OFF OFF OFF GPQHMO

[mode]

Number of available

antialiasing modes

I 1 1 1 1 1 GPQAMO

[totnum]

Available antialiasing modes

(1=OFF, 2=SUBPIXEL_ ON_

THE_ FLY, 3=NON_ SUBPIXEL_

ON_ THE_ FLY)

E OFF OFF OFF OFF OFF GPQAMO

[mode]

Number of available

transparency modes

I 2* 1 1 1 1 GPQTMO

[totnum]

Transparency modes

(1=NONE, 2=PARTIAL_

TRANSPARENT, 3=BLEND,

4=BLEND_ ALL)

E NONE, PARTIAL_

TRANSPARENT

NONE NONE NONE NONE GPQTMO

[mode]

Frame buffer organization

(1=COMPONENT, 2=INDEXED)

E COMPONENT* INDEXED INDEXED INDEXED INDEXED GPQFBC [org]

Number of available frame

buffer components

I 3* 1 1 1 1 GPQFBC [n]

List of bit depths for each

frame buffer component

n[default]I 8,8,8* 7* 4* 4 8 GPQFBC

[depth]

Note:

1Continuous range is supported but you will get a 0 back on inquiry.

* See text prior to this table for more information.

Polyline Facilities

X

General Information Applying to All Adapters

v Nominal, minimum, and maximum line widths and the size of the line pattern unit depend on the

hardware configuration of your workstation. Use the Inquire Polyline Facilities (GPQPLF) subroutine to

obtain the values supported on your workstation.

v You can set the number of polyline table entries that can be active at any one time up to 128 via the

Polyline Bundle Table (PLBTES) procopt. See PLBTES (Polyline Bundle Table).

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v When drawing a wide line with a line type other than 1=SOLID_LINE, the line end type is always 1=FLAT.

v All DWA Adapters except the POWER GT4 Family and the POWER GTO:

– The line pattern is restarted at each vertex for wide lines that are greater than one pixel.

XLIB (non-DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v Color Graphics Display Adapter:

– The line pattern unit is the same as the nominal line width.

74 The graPHIGS Programming Interface: Technical Reference

– No line widths other than the nominal line width are supported.

XSOFT

v Nominal, minimum, and maximum line widths and the size of the line pattern unit depend on the

hardware configuration of your workstation. Use the Inquire Polyline Facilities (GPQPLF) subroutine to

obtain the values supported on your workstation.

v You can set the number of polyline table entries that can be active at any one time up to 128 via the

Polyline Bundle Table (PLBTES) procopt. See PLBTES (Polyline Bundle Table).

v The line pattern is restarted at each vertex for wide lines that are greater than one pixel.

v When drawing a wide line with a line type other than 1=SOLID_LINE, the line end type is always 1=FLAT.

6090

v You can set the number of polyline table entries that can be active at any one time up to 128 via the

Polyline Bundle Table (PLBTES) procopt. See PLBTES (Polyline Bundle Table).

v Nominal, minimum, and maximum line widths depend on the hardware configuration of your workstation.

Use the Inquire Polyline Facilities (GPQPLF) subroutine to obtain the values supported on your

workstation.

v When an end type of 2=ROUND or 3=SQUARE is applied to wide lines, only a line type of 1=SOLID_LINE is

supported.

5080

v Nominal, minimum, and maximum line widths depend on the hardware configuration of your workstation.

Use the Inquire Polyline Facilities (GPQPLF) subroutine to obtain the values supported on your

workstation.

v The number of vertexes in one polyline primitive is limited to approximately 5,000 for two-dimensional

and 4,000 for three-dimensional polyline primitives.

GDDM*

Nominal, minimum, and maximum line widths depend on the hardware configuration of your workstation.

Use the Inquire Polyline Facilities (GPQPLF) subroutine to obtain the values supported on your

workstation.

IMAGE

Nominal, minimum, and maximum line widths and the size of the line pattern unit depend on the hardware

configuration of your workstation. The nominal line is the width of the pixel which can be modified by using

the DCUNITS or DCMETERS procopts.

GDF

The nominal line width is 0.000269 meters regardless of how the GDF file is scaled (i.e., the nominal line

width for the graPHIGS API is independent of the metric scale factor of the resultant GDF file). This results

in a line width of 0.96 Virtual Device Coordinates (VDC). The effective maximum line width is the size of

the workstation display area (0.2582728 meters). However, the size of the display area can be modified

using the Escape (GPES) subroutine.

Wide lines are clipped to their center.

CGM

The nominal line width is 0.000258 meters regardless of how the CGM file is scaled (i.e., the nominal line

width for the graPHIGS API is independent of the metric scale factor of the resultant CGM file). This

results in a line width of 0.96 Virtual Device Coordinates (VDC). See Picture Descriptor Elements for more

Chapter 3. Workstation Description Tables 75

information about VDCs. The effective maximum line width is the size of the workstation display area

(0.2582728 meters). However, the size of the display area can be modified using the Escape (GPES)

subroutine.

Wide lines are clipped to their center.

For CGM picture descriptor element information on line width specification mode, see Picture Descriptor

Elements.

For CGM attribute information on line types, see CGM Line Attributes.

 Table 19. Polyline Facilities - X Workstation Default Values

Polyline Facilities Data Type IMAGE DWA Adapters1 XSOFT Adapters1 XLIB Adapters Inquiry

Availability of line type

representation

(1=NOT_AVAILABLE,

2=BOTH_AVAILABLE,

3=INQUIRE_ONLY_ AVAILABLE,

4=SET_ONLY_AVAILABLE)

E BOTH_ AVAILABLE BOTH_ AVAILABLE BOTH_ AVAILABLE BOTH_ AVAILABLE GPQLTF

[available]

Size of line pattern unit (in

meters)

R 0.00135466* 0.001328125* 0.001328125* 0.00033* GPQLTF [unit]

Maximum number of line

sections

I 8 8 8 8 GPQLTF

[sections]

Maximum length of line

pattern

I 256 256 256 256 GPQLTF [maxlen]

Number of available line

rendering styles

I 2 2 2 2 GPQLNR [totnum]

Available line rendering styles

(1=WORKSTATION_

DEPENDENT_RENDERING,

2=SCALED_TO_FIT_ RENDERING)

E WORK- STATION_

DEPENDENT_

RENDERING,

SCALED_TO_ FIT_

RENDERING

WORK- STATION_

DEPENDENT_

RENDERING,

SCALED_TO_ FIT_

RENDERING

WORK- STATION_

DEPENDENT_

RENDERING,

SCALED_TO_ FIT_

RENDERING

WORK- STATION_

DEPENDENT_

RENDERING,

SCALED_TO_ FIT_

RENDERING

GPQLNR [rstyle]

Number of available line types I 16 16 16 16 GPQPLF [ntype]

Available line types

(see Table 15)

E 1-16 1-16 1-16 1-16 GPQPLF [ltype]

Number of available line

widths

I Cont. range

supported2 *

Cont. range

supported2 *

Cont. range

supported2 *

1 GPQPLF [nlwidth]

Nominal line width (in meters) R 0.0003386* 0.000332031* 0.000332031* 0.00033* GPQPLF [lwidth]

Minimum line width (in

meters)

R 0.0003386* 0.000332031* 0.000332031* 0.00033* GPQPLF [minlw]

Maximum line width (in

meters)

R 0.215* 0.425* 0.425* 0.00033* GPQPLF [maxlw]

Maximum number of polyline

bundle table entries

I 128* 128* 128* 128* GPQLW [ltable]

Number of predefined polyline

bundle table entries

I 6 6 6 6 GPQPLF [npred]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2 Continuous range is supported but you will get a 0 back on inquiry.

* See the text prior to this table for more information.

 Table 20. Polyline Facilities Default Values

Polyline Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Availability of line type

representation (NONE, BOTH,

INQUIRE ONLY, SET ONLY)

E BOTH BOTH NONE BOTH BOTH GPQLTF

[available]

Size of line pattern unit (in

meters)

R 0.001328125* 0.00111121 N/A 0.001328125 0.001328125* GPQLTF [unit]

76 The graPHIGS Programming Interface: Technical Reference

Table 20. Polyline Facilities Default Values (continued)

Polyline Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Maximum number of line

sections

I 8 8 N/A 8 8 GPQLTF

[sections]

Maximum length of line

pattern

I 256 256 N/A 256 256 GPQLTF

[maxlen]

Number of available line

rendering styles

I 2 1 1 2 2 GPQLNR

[totnum]

Available line rendering styles

(1=WORKSTATION_ DEPENDENT_

RENDERING, 2=SCALED_ TO_

FIT_ RENDERING)

E WORK-

STATION_

DEPENDENT_

RENDERING,

SCALED_TO_

FIT_

RENDERING

WORK-

STATION_

DEPENDENT_

RENDERING

WORK-

STATION_

DEPENDENT_

RENDERING

WORK-

STATION_

DEPENDENT_

RENDERING,

SCALED_TO_

FIT_

RENDERING

WORK STATION_

DEPENDENT_

RENDERING,

SCALED_TO_

FIT_

RENDERING

GPQLNR

[rstyle]

Number of available line

types

I 16* 13 7 16 16 GPQPLF

[ntype]

Available line types

(see Table 15)

E 1-16* 1-13 1-7 1-16 1-16* GPQPLF

[ltype]

Number of available line

widths

I 1024* 1024* 2 Cont. range

supported1

Cont. range

supported1

GPQPLF

[nlwidth]

Nominal line width (in meters) R 0.000332031* 0.0002778* 0.0003428* 0.000269* 0.000258* GPQPLF

[lwidth]

Minimum line width (in

meters)

R 0.000332031* 0.0002778* 0.0003428* 0.000269* 0.000258* GPQPLF

[minlw]

Maximum line width (in

meters)

R 0.425* 0.28448* 0.0006856* 0.2582728* 0.2582728* GPQPLF

[maxlw]

Maximum number of polyline

bundle table entries

I 128* 20 20 20 20 GPQLW

[ltable]

Number of predefined polyline

bundle table entries

I 6 6 6 6 6 GPQPLF

[npred]

Note:

1 Continuous range is supported but you will get a 0 back on inquiry.

* See the text prior to this table for more information.

 Table 21. Predefined Polyline Bundle Table

Entry Line Type Line Width Scale Factor Color Type Color Index

1 SOLID_LINE 1.0 INDEXED 1

2 DASHED 1.0 INDEXED 2

3 DOTTED 1.0 INDEXED 3

4 DASH_DOT 1.0 INDEXED 4

5 SOLID_LINE 1.0 INDEXED 5

6 DASHED 1.0 INDEXED 6

 Table 22. Predefined Line Types

Entry Line Type

1 SOLID_LINE

2 DASHED

3 DOTTED

4 DASH_DOT

5 LONG_DASH

6 DOUBLE_DOT

Chapter 3. Workstation Description Tables 77

Table 22. Predefined Line Types (continued)

Entry Line Type

7 DASH_DOUBLE_DOT

8- n SOLID_LINE

Polymarker Facilities

X

General Information Applying to All Adapters

v Nominal, minimum, and maximum marker sizes depend on the hardware configuration of your

workstation. Use the Inquire Polymarker Facilities (GPQPMF) subroutine to obtain the values supported

on your workstation.

v You can set the number of polymarker bundle table entries that may be active at any one time up to

128 via the Polymarker Bundle Table (PMBTES) procopt. See PMBTES (Polymarker Bundle Table).

6090

Nominal, minimum, and maximum marker sizes depend on the hardware configuration of your workstation.

Use the Inquire Polymarker Facilities (GPQPMF) subroutine to obtain the values supported on your

workstation.

You can set the number of polymarker bundle table entries that may be active at any one time up to 128

via the Polymarker Bundle Table (PMBTES) procopt. See PMBTES (Polymarker Bundle Table).

5080

Nominal, minimum, and maximum marker sizes depend on the hardware configuration of your workstation.

Use the Inquire Polymarker Facilities (GPQPMF) subroutine to obtain the values supported on your

workstation.

The number of polymarkers in one polymarker primitive is limited to approximately 8,000 for the 2D

primitive and 5,000 for the 3D primitive.

The marker size scale factors supported are:

v 1.50 (5080 large markers)

v 1.25 (5080 medium markers)

v 1.00 (5080 basic markers)

v 0.75 (5080 small markers)

Nominal, minimum, and maximum marker sizes depend on the hardware configuration of your workstation.

Use the Inquire Polymarker Facilities (GPQPMF) subroutine to obtain the values supported on your

workstation.

CGM

The nominal marker width is 0.00258 meters regardless of how the CGM file is scaled (i.e., the nominal

marker width for the graPHIGS API is independent of the metric scale factor of the resultant CGM file).

The effective maximum marker width is the size of the workstation display area (0.2582728 meters).

However, the size of the display area can be modified using the Escape (GPES) subroutine.

Polymarkers are represented as a series of CGM polylines. For more information, see line attributes CGM

Line Attributes.

78 The graPHIGS Programming Interface: Technical Reference

Table 23. Polymarker Facilities - X Workstation Default Values

Polymarker Facilities Data Type IMAGE DWA Adapters1 XSOFT

Adapters1

XLIB Adapters Inquiry

Availability of marker type

representation

(1=NOT_AVAILABLE,

2=BOTH_AVAILABLE,

3=INQUIRE_ONLY_ AVAILABLE,

4=SET_ONLY_AVAILABLE)

E BOTH_ AVAILABLE BOTH_ AVAILABLE BOTH_ AVAILABLE BOTH_ AVAILABLE GPQMTF

[available]

Marker definition format

(VECTOR)

E VECTOR VECTOR VECTOR VECTOR GPQMTF [format]

Maximum length of marker

definition data (number of

strokes)

I 64 64 64 64 GPQMTF

[maxlen]

Number of available marker

types

I 16 16 16 16 GPQPMF [ntype]

Available marker types (see

Table 19)

E 1-16 1-16 1-16 1-16 GPQPMF [mtype]

Number of available marker

sizes

I Continuous range

supported2

Continuous range

supported2

Continuous range

supported2

Continuous range

supported2

GPQPMF [nsize]

Nominal marker size (in

meters)

R 0.004064* 0.006640625* 0.006640625* 0.006640625* GPQPMF [size]

Minimum marker size (in

meters)

R 0.00033866* 0.000332031* 0.000332031* 0.000332031* GPQPMF

[minms]

Maximum marker size (in

meters)

R 0.215* 0.425* 0.425* 0.425* GPQPMF

[maxms]

Maximum number of

polymarker bundle table

entries

I 128* 128* 128* 128* GPQLW [mtable]

Number of predefined

polymarker bundle table

entries

I 6 6 6 6 GPQPMF [npred]

Note:

1See the text prior to General Workstation Facilities table for a list of DWA and XSOFT Adapters.

2 Continuous range is supported but you will get a 0 back on inquiry.

* See the text prior to this table for more information.

 Table 24. Polymarker Facilities Default Values

Polymarker Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Availability of marker type

representation (1=NOT_

AVAILABLE, 2=BOTH_

AVAILABLE, 3=INQUIRE_

ONLY_ AVAILABLE, 4=SET_

ONLY_ AVAILABLE)

E BOTH_

AVAILABLE

NOT_

AVAILABLE

NOT_

AVAILABLE

BOTH_

AVAILABLE

BOTH_

AVAILABLE

GPQMTF

[available]

Marker definition format

(1=VECTOR)

E VECTOR N/A N/A VECTOR VECTOR GPQMTF

[format]

Maximum length of marker

definition data (number of

strokes)

I 64 N/A N/A 64 64 GPQMTF

[maxlen]

Number of available marker

types

I 16 5 5 16 16 GPQPMF

[mtype]

Available marker types (see

Table 19)

E 1-16 1-5 1-5 1-16 1-16* GPQPMF

[mtype]

Number of available marker

sizes

I Continuous

range

supported1

4 1 Continuous

range

supported1

Continuous

range

supported1

GPQPMF

[nsize]

Nominal marker size (in

meters)

R 0.006640625* 0.0055562* 0.0030852* 0.0053806 0.00258* GPQPMF

[size]

Minimum marker size (in

meters)

R 0.000332031* 0.0041671* 0.0030852* 0.000538 0.000258* GPQPMF

[minms]

Chapter 3. Workstation Description Tables 79

Table 24. Polymarker Facilities Default Values (continued)

Polymarker Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Maximum marker size (in

meters)

R 0.425* 0.0083343* 0.0030852* 0.2582728 0.2582728* GPQPMF

[maxms]

Maximum number of

polymarker bundle table

entries

I 128* 20 20 20 20 GPQLW

[mtable]

Number of predefined

polymarker bundle table

entries

I 6 6 6 6 6 GPQPMF

[npred]

Note:

1 Continuous range is supported but you will get a 0 back on inquiry.

* See the text prior to this table for more information.

 Table 25. Predefined Polymarker Bundle Table

Table Entry Marker Type Marker Size Scale Factor Color Type Color Index

1 DOT 1.0 INDEXED 1

2 PLUS_SIGN 1.0 INDEXED 2

3 ASTERISK 1.0 INDEXED 3

4 CIRCLE 1.0 INDEXED 4

5 DIAGONAL_CROSS 1.0 INDEXED 5

6 DOT 1.0 INDEXED 6

 Table 26. Predefined Marker Types

Table Entry Marker Type

1 DOT

2 PLUS_SIGN

3 ASTERISK

4 CIRCLE

5 DIAGONAL_CROSS

6- n ASTERISK

Text Facilities

X

General Information Applying to All Adapters

You can set the number of text bundle entries that may be active at any one time up to 128 via the Text

Bundle Table (TXBTES) procopt. See TXBTES (Text Bundle Table).

Annotation Text Primitives and Attributes:

v Annotation up vector, annotation alignment, and character positioning mode are not supported.

v Character precision (CHAR_PREC) is supported the same as string precision (STRING_PREC) with the

additional attribute support for annotation text path, character spacing, and character expansion factor.

v Only font 1 of the primary character set is available. This may be character set 6, 8, 9, 10, 11 or 12. For

a discussion of how to set the primary character set, see Opening the X Workstation.

80 The graPHIGS Programming Interface: Technical Reference

v Kanji (character set identifiers 128 and 134), Hangul (character set identifier 129), Traditional Chinese

(character set identifier 130), Simplified Chinese (character set identifier 132) and Unicode (character

set identifier 131) are not supported.

Geometric Text Primitives and Attributes:

v Geometric proportional fonts are supported.

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v All annotation text attributes are supported.

v Geometric text culling is supported for 2D and 3D primitives.

v All DWA Adapters except the POWER GTO:

– Character precision (CHAR_PREC) produces the same result as stroke precision (STROKE_PREC).

XLIB (non-DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v Geometric Text Primitives and Attributes:

– Geometric text culling is supported for 2D primitives.

XSOFT

Character precision (CHAR_PREC) produces the same result as stroke precision (STROKE_PREC).

6090

Annotation Text Primitives and Attributes:

v Character precision (CHAR_PREC) produces the same result as (STROKE_PREC).

v Only font 1 of the primary character set is available. This may be character set 6 or 8.

v Kanji (character set identifiers 128 and 134), Hangul (character set identifier 129), Traditional Chinese

(character set identifier 130), Simplified Chinese (character set identifier 132), and Unicode (character

set identifier 131) are not supported.

Geometric Text Primitives and Attributes:

v You can set the number of text bundle entries that may be active at any one time up to 128 via the Text

Bundle Table (TXBTES) procopt. See TXBTES (Text Bundle Table).

v All geometric text attributes are supported.

v Character precision (CHAR_PREC) produces the same result as stroke precision (STROKE_PREC).

v Hangul (character set identifier 129), Traditional Chinese (character set identifier 130), Simplified

Chinese (character set identifier 132), Kanji (character set identifier 134 only), and Unicode (character

set identifier 131) are not supported.

5080

Annotation Text Primitives and Attributes:

v The number of characters in one annotation text primitive is limited to approximately 32,000.

v Annotation text relative is not supported.

v Character positioning mode is ignored; the 5080 supports only constant-sized annotation characters.

Character expansion factor, annotation up vector, and annotation alignment are not supported.

v Character precision (CHAR_PREC) is the highest annotation precision supported. If you specify stroke

precision (STROKE_PREC), then CHAR_PREC is used.

v Only font 1 of the primary character set is available. This may be character set 1 through 7, or 9

depending on the current customized language feature of the 5080.

Chapter 3. Workstation Description Tables 81

v Kanji (character set identifiers 128 and 134), Hangul (character set identifier 129), Traditional Chinese

(character set identifier 130), Simplified Chinese (character set identifier 132), and Unicode (character

set identifier 131) are not supported.

v The annotation height scale factors supported by the 5080 are:

– 1.50 (5080 large characters)

– 1.25 (5080 medium characters)

– 1.00 (5080 basic characters)

– 0.75 (5080 small characters)

Geometric Text Primitives and Attributes:

v The default number of geometric character sets that may be active at any one time is three. You may

set this number to any value up to ten via the Font Pool Size (FONTPSIZ) procopt. See FONTPSIZ (Font

Pool Size).

v The number of characters in one geometric text primitive is limited to approximately 32,000.

v Character precision (CHAR_PREC) produces the same result as stroke precision (STROKE_PREC).

v Character positioning mode is not supported.

v For user-defined character sets, the default character is ignored; it is always the hyphen. For additional

information on limitations for user-defined character sets, see IBM 5080 Character Set Restrictions.

v Kanji: If you use Kanji (character set identifier 128), it must be available in the workstation prior to

invocation of the graPHIGS API using the 5080 Japanese Language Feature. For information on how to

customize your 5080 to support Kanji, see The GDDM/graPHIGS Programming Interface: Installation

and Problem Diagnosis.

On opening the workstation, if the graPHIGS API finds a valid memory area for output Kanji then output

Kanji is made available for output to the workstation (although the application must still activate it). If the

Kanji output and input memory areas are detected, and Katakana is the primary character set, then

input is made available for input from the workstation. After opening the workstation, the Kanji font is

never deleted.

Character set identifier 134, the IBM-943 encoded Kanji support, is not supported.

v Hangul: If you use Hangul (character set identifier 129), it must be available in the workstation prior to

invocation of the graPHIGS API using the 5080 Korean Language Feature. For information on how to

customize your 5086 to support Hangul, see The GDDM/graPHIGS Programming Interface: Installation

and Problem Diagnosis.

On opening the workstation, if the graPHIGS API finds a valid memory area for output Hangul then

output Hangul is made available for output to the workstation (although the application must still activate

it). If the Hangul output and input memory areas are detected, and csid 9 is the primary character set,

then Hangul is made available for input from the workstation. After opening the workstation, the Hangul

font is never deleted.

v Traditional Chinese: Traditional Chinese (character set identifier 130) is not supported.

v Simplified Chinese: Simplified Chinese (character set identifier 132) is not supported.

v Unicode: Unicode (character set identifier 131) is not supported.

GDDM

Annotation Text Primitives and Attributes:

v Character expansion factor, annotation up vector, annotation alignment and character positioning mode

are not supported.

v Annotation text relative is not supported.

v Character precision (CHAR_PREC) is the highest precision supported. If you specify stroke precision

(STROKE_PREC), then CHAR_PREC is used.

v Only font 1 of the primary character set is available.

v The number of available annotation height size scale factors is one.

82 The graPHIGS Programming Interface: Technical Reference

Geometric Text Primitives and Attributes:

v The number of characters in one geometric text primitive is limited to approximately 32,000.

v In CHAR_PREC and STRING_PREC precision, characters are clipped on a character basis. If any part of a

character is clipped, the entire character is not visible.

v Traditional Chinese (character set identifier 130) is not supported.

v Simplified Chinese (character set identifier 132) is not supported.

v The Kanji function using the IBM-943 encoding (character set identifier 134) is not supported.

v Unicode (character set identifier 131) is not supported.

IMAGE

Character precision (CHAR_PREC) produces the same result as stroke precision (STROKE_PREC).

GDF

Annotation Text Primitives and Attributes:

v Character expansion factor, annotation up vector, annotation alignment, and character positioning mode

are not supported.

v Character precision (CHAR_PREC) produces the same results as stroke precision (STROKE_PREC).

v Only font 1 of the primary character set is available.

v Character code points are written directly into the CGM file. The characters drawn depend on your

interpreter. The output metafile does not specify a character set or font. It uses the default of the

interpreter.

v The number of available annotation height scale factors is one. The size is determined by the output

system default.

v Pixel primitives and annotation text are not clipped to the exterior of obscuring views, even if the

obscuring view has view shielding set to 2=ON.

Geometric Text Primitives and Attributes:

v Traditional Chinese (character set identifier 130) is not supported.

v Unicode (character set identifier 131) is not supported.

v Simplified Chinese (character set identifier 132) is not supported.

v The Kanji function using the IBM-943 encoding (character set identifier 134) is not supported.

CGM

Annotation Text Primitives and Attributes:

v Character precision (CHAR_PREC) produces the same results as stroke precision (STROKE_PREC).

v Available annotation text character sets supported depend on the configuration of your workstation. Use

the Inquire Primary Character Set (GPQPCS) subroutine to obtain the values supported on your

workstation.

v Only font 1 of the primary character set is available.

v Character code points are written directly into the CGM file. If the nucleus is running in an EBCDIC

environment, then code points are first translated to ASCII using the translation table for character set 1.

The characters drawn depend on your interpreter. The output metafile does not specify a character set

or font. It uses the default of the interpreter.

v Kanji (character set identifiers 128 and 134), Hangul (character set identifier 129), Traditional Chinese

(character set identifier 130), Simplified Chinese (character set identifier 132) and Unicode (character

set identifier 131) are not supported.

v The nominal height scale factor is 1/100 of the default display surface size. Use the Escape Subroutine

(1010: Inquire Mapped Display Surface Size) to determine the size of your display. An annotation height

Chapter 3. Workstation Description Tables 83

scale factor of zero would result in 0.0000001* nominal height which is minute in size (i.e., a point). For

more information on scaling, see scaling mode Picture Descriptor Elements.

v Pixel primitives and annotation text are not clipped to the exterior of obscuring views, even if the

obscuring view has view shielding set to 2=ON.

v For CGM attribute information on text, see CGM Text Attributes.

Geometric Text Primitives and Attributes:

v Traditional Chinese (character set identifier 130) is not supported.

v Unicode (character set identifier 131) is not supported.

v Simplified Chinese (character set identifier 132) is not supported.

v The Kanji function using the IBM-943 encoding (character set identifier 134) is not supported.

 Table 27. Text Facilities - X Workstation Default Values

Text Facilities Data

Type

IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Maximum number of geometric

character set IDs/fonts that may

be activated to a workstation

I 20 20 20 20 20 GPQFP

[poolsize]

Geometric filled font support

(1=YES, 2=NO)

E NO YES YES YES NO GPQXTX [filled]

Geometric proportional font

support (1=YES, 2=NO)

E YES YES YES YES YES GPQXTX

[proportional]

Number of annotation styles I 2 2 2 2 2 GPQANF

[totnum]

Available annotation styles

(1=UNCONNECTED, 2=LEAD_LINE)

E UNCONNECTED,

LEAD_LINE

UNCONNECTED,

LEAD_LINE

UNCONNECTED,

LEAD_LINE

UNCONNECTED,

LEAD_LINE

UNCONNECTED,

LEAD_LINE

GPQANF

[styles]

Maximum number of text bundle

table entries

I 128* 128* 128* 128* 128* GPQLW [ttable]

Number of predefined text

entries

I 6 6 6 6 6 GPQXTX

[npred]

Available annotation text

character sets

E 6, 8, 9, 10* 6, 8, 9, 10* 6, 8, 9, 10, 11,

12

2,*

6, 8, 9, 10,

11,12*

6, 8, 9, 10,

11,12*

GPQPCS [csid]

Available font of primary

character set for annotation text

E Font 1 only Font 1 only Font 1 only Font 1 only Font 1 only GPQFO [font]

Note:

1See General Workstation Facilities for a list of DWA and XSOFT Adapters.

2 Limited support may be available for additional fonts.

 *See text prior to this table for more information.

 Table 28. Text Facilities Default Values

Text Facilities Data

Type

6090 5080 GDDM GDF CGM Inquiry

Maximum number of

geometric character set

IDs/fonts that may be

activated to a workstation

I No limit1 10* 20 20 20 GPQFP

[poolsize]

Geometric filled font support

(YES, NO)

E YES NO NO NO NO GPQXTX [filled]

Geometric proportional font

support (YES, NO)

E YES NO NO NO NO GPQXTX

[proportional]

Number of annotation styles I 2 1 1 2 2 GPQANF

[totnum]

Available annotation styles

(1=UNCONNECTED,

2=LEAD_LINE)

E UNCONNECTED,

LEAD_LINE

UNCONNECTED UNCONNECTED UNCONNECTED,

LEAD_LINE

UNCONNECTED,

LEAD_LINE

GPQANF

[styles]

84 The graPHIGS Programming Interface: Technical Reference

Table 28. Text Facilities Default Values (continued)

Text Facilities Data

Type

6090 5080 GDDM GDF CGM Inquiry

Maximum number of text

bundle table entries

I 128* 20 20 20 20 GPQLW [ttable]

Number of predefined text

entries

I 6 6 6 6 6 GPQXTX

[npred]

Available annotation text

character sets

E 6, 8 1-7, 9* 1 1 1,8* GPQPCS [csid]

Available font of primary

character set for annotation

text

E Font 1 only Font 1 only Font 1 only Font 1 only Font 1 only GPQFO [font]

Note:

1 ″No limit″ returns 0 on the inquiry.

* See text prior to this table for more information.

 Table 29. Predefined Text Bundle

Entry Font Precision Expansion Spacing Color Type Color

1 1 STRING_PREC 1.0 0.0 INDEXED 1

2 1 STRING_PREC 1.0 0.0 INDEXED 2

3 1 STRING_PREC 1.0 0.0 INDEXED 3

4 1 STRING_PREC 1.0 0.0 INDEXED 4

5 1 STRING_PREC 1.0 0.0 INDEXED 5

6 1 STRING_PREC 1.0 0.0 INDEXED 6

Interior Facilities

For performance reasons, some graPHIGS API workstations choose not to draw the boundary of a

polygon if the edge flag is set to 2=ON. This may avoid drawing the polygon outline twice. If you use a

non-solid edge type, then you may get different output on different devices, since the boundary color may

or may not be visible between the edge segments.

X

General Information Applying to All Adapters

You can set the number of interior bundle table entries that may be active at any one time up to 128 via

the Interior Bundle Table (IBTES) procopt. See IBTES (Interior Bundle Table).

XLIB (non-DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v Availability of hatch representation is NONE.

v There are six available hatch styles.

v Available hatch styles are 1-6.

v There is no hatch definition format.

v There is no pattern definition format.

v There are no pattern indexes.

v There are a total of four interior styles.

v The available interior styles are 1=HOLLOW, 2=SOLID, 4=HATCH, 5=EMPTY.

v Hatch styles 21 and 22 are predefined as vertical lines. These hatch styles are similar in appearance to

hatch style 1.

Chapter 3. Workstation Description Tables 85

6090

Patterns are not transformable.

If you are using the shading feature (HLHSR is set to 2=ON_THE_FLY, or depth cue mode is set to

2=ALLOWED, or lighting calculation is set to 2=PER_AREA or 3=PER_AREA), then interior styles 1=HOLLOW,

3=PATTERN and 4=HATCH are not supported. Interior style 1=HOLLOW defaults to 5=EMPTY. Interior styles

3=PATTERN and 4=HATCH default to 2=SOLID.

You can set the number of interior bundle table entries that may be active at any one time up to 128 via

the Interior Bundle Table (IBTES) procopt. See IBTES (Interior Bundle Table).

5080

The number of vertices in one polygon primitive is variable and depends on factors such as the coordinate

distances when converted to 5080 coordinate units and the number of subareas. When subareas are

used, the number of vertexes supported decreases by the number of subareas. The area fill is limited to

350 polygon points; if this maximum is exceeded, then the graPHIGS API does not fill the polygon.

Hatch styles 21 and 22 are predefined as vertical lines. These hatch styles are similar in appearance to

hatch style 1.

For an interior style of 4=HATCH, the polygon is first filled using color index 0 and then the hatch pattern is

overlaid in the specified color. In other words, 4=HATCH interior style is similar to 3=PATTERN in that you

cannot see primitives behind the hatching pattern.

Patterns are not transformable.

When the projection type is set to 2=PERSPECTIVE, then interior styles 2=SOLID, 3=PATTERN, and 4=HATCH

remain in parallel projection. They are always displayed using 1=PARALLEL projection type. For example,

your application defines a polygon with an interior style, with edge flag set to 2=ON and with projection type

set to 1=PARALLEL. If you change the projection type from 1=PARALLEL to 2=PERSPECTIVE, then the graPHIGS

API displays only the edge in perspective. The filled interior style does not change.

The graPHIGS API clips polygon edges in the z direction; however, the graPHIGS API does not clip

polygon interiors.

GDDM

Patterns are not transformable.

Interior style 3=PATTERN is not available on plotter devices; 1=HOLLOW is used instead. Only a monochrome

pattern is available on 3270 PC/G, GX devices.

The maximum pattern size depends on the device cells. The Set Pattern Representation (GPPAR)

subroutine function repeats or truncates the specified pattern to achieve a maximum pattern.

GDF

All hatch styles are supported. However, the hatch displayed is dependent on the post-processing routine

and device.

Many interpreters do not support patterns, especially when the output device is a post-processing device,

such as a pen plotter. When patterns are supported, the pattern definition is not preserved in the file. The

pattern displayed is dependent on the post-processing routine and device.

 Device Size

3270-PC/G 8 by 15

86 The graPHIGS Programming Interface: Technical Reference

Device Size

3270-PC/GX 8 by 15

3279-Display 9 by 16

CGM

There is no limit on the maximum pattern size (x size, y size). A logical limit would be 960[default]960, but

this may exceed memory constraints.

Many interpreters do not support patterns, especially when the output device is a post-processing device,

such as a pen plotter.

For CGM attribute information on hatch and interior styles, see CGM Interior Attributes.

 Table 30. Interior Facilities - X Workstation Default Values

Interior Facilities Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Availability of hatch

representation

(1=NOT_AVAILABLE,

2=BOTH_AVAILABLE,

3=INQUIRE_ONLY_AVAILABLE,

4=SET_ONLY_AVAILABLE)

E BOTH_

AVAILABLE

BOTH_

AVAILABLE

BOTH_

AVAILABLE

BOTH_

AVAILABLE

NOT_ AVAILABLE GPQHF

[available]

Number of available hatch

styles

I 24 24 24 24 6 GPQIF

[hatnum]

Available hatch styles I 1-24 1-24* 1-24 1-24 1-6 GPQIF [hatch]

Hatch definition format

(1=BIT_ARRAY)

E BIT_ARRAY BIT_ARRAY BIT_ARRAY BIT_ARRAY N/A GPQHF

[format]

Maximum length hatch definition

data

E 136 136 136 136 N/A GPQHF

[maxlen]

Pattern definition format (1-byte

integer array)

E 1-byte 1-byte 1-byte 1-byte N/A

Maximum pattern size (x size,

y size)

2xI 32x32 32x32 32x32 32x32 N/A GPQPAF

[maxrow,

maxcol]

Maximum number of pattern

indexes

I 4 4 4 4 N/A GPQLW

[pttable]

Number of predefined pattern

indexes

I 2 2 2 2 0 GPQPAF

[indexes]

Number of available interior

styles

I 5 5 5 5 4 GPQIF

[intnum]

Available interior styles

(1=HOLLOW, 2=SOLID,

3=PATTERN, 4=HATCH, 5=EMPTY)

E HOLLOW, SOLID,

PATTERN,

HATCH, EMPTY

HOLLOW, SOLID,

PATTERN,

HATCH, EMPTY

HOLLOW,

SOLID,

PATTERN,

HATCH, EMPTY

HOLLOW,

SOLID,

PATTERN,

HATCH, EMPTY

HOLLOW, SOLID,

HATCH, EMPTY

GPQIF

[interiors]

Maximum number of interior

bundle table entries

I 128* 128* 128* 128* 128* GPQLW

[itable]

Number of predefined interior

bundle table entries

I 6 6 6 6 6 GPQIF [npred]

Note:

1See General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

Chapter 3. Workstation Description Tables 87

Table 31. Interior Facilities Default Values

Interior Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Availability of hatch

representation

(1=NOT_AVAILABLE,

2=BOTH_AVAILABLE,

3=INQUIRE_ONLY_AVAILABLE,

4=SET_ONLY_AVAILABLE)

E BOTH_

AVAILABLE

BOTH_

AVAILABLE

NOT_

AVAILABLE

NOT_

AVAILABLE

NOT_

AVAILABLE

GPQHF

[available]

Number of available hatch styles I 24 24 14 14 6 GPQIF

[hatnum]

For available hatch E 1-24 1-24* 1-14 1-14 1, 2, 4, 6* GPQIF [hatch]

Hatch definition format

(1=BIT_ARRAY)

E BIT_ARRAY BIT_ARRAY N/A N/A N/A GPQHF

[format]

Maximum length hatch definition

data

I 136 32 N/A N/A N/A GPQHF

[maxlen]

Pattern definition format (1-byte

integer array)

E 1-byte 1-byte 1-byte 1-byte 1-byte

Maximum pattern size (x size, y

size)

2 [default] I 32 [default] 32 16 [default] 16 9 [default] 12 12 [default] 20 960 [default]

960*

GPQPAF

[maxrow,

maxcol]

Maximum number of pattern

indexes

I 4 10 10 10 10 GPQLW

[pttable]

Number of predefined pattern

indexes

I 2 2 2 1 2 GPQPAF

[indexes]

Number of available interior

styles

I 5 4 5 5 5 GPQIF

[intnum]

Available interior styles

(1=HOLLOW, 2=SOLID,

3=PATTERN, 4=HATCH, 5=EMPTY)

E HOLLOW, SOLID,

PATTERN,

HATCH, EMPTY

HOLLOW,

SOLID,

PATTERN,

HATCH

HOLLOW,

SOLID,

PATTERN,

HATCH, EMPTY

HOLLOW,

SOLID,

PATTERN,

HATCH, EMPTY

HOLLOW,

SOLID,

PATTERN,

HATCH, EMPTY

GPQIF

[interiors]

Maximum number of interior

bundle table entries

I 128* 20 20 20 20 GPQLW

[itable]

Number of predefined interior

bundle table entries

I 6 6 6 6 6 GPQIF [npred]

Note: See the text prior to this table for more information.

 Table 32. Predefined Interior Bundle Tables

Table Entry Interior Style Style Index Color Type Color Index

1 HOLLOW 1 INDEXED 1

2 SOLID 1 INDEXED 4

3 SOLID 1 INDEXED 5

4 SOLID 1 INDEXED 6

5 PATTERN 1 INDEXED 1

6 PATTERN 1 INDEXED 1

 Table 33. Default Hatch Table

Table Entry Interior Style

1 Vertical lines

2 Horizontal lines

3 Diagonal lines (lower left to upper right 45[default], wide spacing)

4 Diagonal lines (lower left to upper right 45[default], medium spacing)

5 Diagonal lines (lower right to upper left 135[default], wide spacing)

6 Diagonal lines (lower right to upper left 135[default], medium spacing)

7 Raster pattern 1

88 The graPHIGS Programming Interface: Technical Reference

Table 33. Default Hatch Table (continued)

Table Entry Interior Style

8 Raster pattern 2

9 Raster pattern 3

10 Raster pattern 4

11 Raster pattern 5

12 Raster pattern 6

13 Raster pattern 7

14 Raster pattern 8

15 Cross-hatched (horizontal and vertical lines), Spacing 1

16 Cross-hatched (diagonal lines), Spacing 1

17 Cross-hatched (horizontal and vertical lines), Spacing 2

18 Cross-hatched (diagonal lines), Spacing 2

19 Cross-hatched (horizontal and vertical lines), Spacing 3

20 Cross-hatched (diagonal lines), Spacing 3

21 Cross-hatched (horizontal and vertical lines), Spacing 4

22 Cross-hatched (diagonal lines), Spacing 4

23 Brick pattern, horizontal

24 Brick pattern, diagonal

 Table 34. Predefined Pattern Table

Pattern number Pattern

Pattern 1 1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

Pattern 2 1 2 3 0

0 1 2 3

3 0 1 2

2 3 0 1

Edge Facilities

X

General Information Applying to All Adapters

Nominal, minimum, and maximum edge widths supported depend on the hardware configuration of your

workstation. Use the Inquire Edge Facilities (GPQEF) subroutine to obtain the values supported on your

workstation.

You can set the number of edge bundle table entries that may be active at any one time up to 128 via the

Edge Bundle Table (EBTES) procopt. See EBTES (Edge Bundle Table).

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v All DWA Adapters except the POWER GT4x(8 bit or 24 bit):

– Only nominal edge line width is supported.

Chapter 3. Workstation Description Tables 89

v POWER GTO (8 bit or 24 bit):

– Edge line style is not applied in the following cases:

- when rendering the Triangle Strip 3 primitive

- when rendering trimmed surface primitives

- when rendering Quadrilateral Mesh 3

v POWER Gt4x (8 bit or 24 bit):

– If edge line style other than SOLID_LINE is specified, then the edge line width defaults to a value of

1.0.

XLIB (non-DWA) Capabilities on the RS/6000

In addition to the general capabilities supported by all adapters:

v Color Graphics Display Adapter

– Only nominal edge line width is supported.

XSOFT

Only nominal edge line width is supported.

6090

v Surface primitives do not support edge attributes.

v Only nominal edge line width is supported.

v Nominal, minimum, and maximum edge widths supported depend on the hardware configuration of your

workstation. Use the Inquire Edge Facilities (GPQEF) subroutine to obtain the values supported on your

workstation.

v You can set the number of edge bundle table entries that may be active at any one time up to 128 via

the Edge Bundle Table (EBTES) procopt. See EBTES (Edge Bundle Table).

5080

Only nominal edge line width is supported.

GDDM

Nominal, minimum, and maximum edge widths supported depend on the hardware configuration of your

workstation. Use the Inquire Edge Facilities (GPQEF) subroutine to obtain the values supported on your

workstation.

IMAGE

Only nominal edge line width is supported.

CGM

The nominal edge width is 0.000258 meters regardless of how the CGM file is scaled (i.e., the nominal

edge width for the graPHIGS API is independent of the metric scale factor of the resultant CGM file). The

effective maximum edge width is the size of the workstation display area (0.2582728 meters). However,

the size of the display area can be modified using the Escape (GPES) subroutine.

For CGM attribute information on edge types, see CGM Edge Attributes.

 Table 35. Edge Facilities - X Workstation Default Values

Edge Facilities Data

Type

IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Number of available edge line

types

I 16 16 16 16 16 GPQEF

[netype]

90 The graPHIGS Programming Interface: Technical Reference

Table 35. Edge Facilities - X Workstation Default Values (continued)

Edge Facilities Data

Type

IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Available edge line types

(see Table 15)

E 1-16 1-16 1-16 1-16 1-16 GPQEF [eltype]

Number of available edge line

widths

I 1 Cont. range

supported2*

1 1 1 GPQEF

[nelwidth]

Nominal edge width (in

meters)

R 0.00033866* 0.000332031* 0.000332031* 0.000332031* 0.000332031* GPQEF

[elwidth]

Minimum edge width (in

meters)

R 0.00033866* 0.000332031* 0.000332031* 0.000332031* 0.000332031* GPQEF

[minelw]

Maximum edge width (in

meters)

R 0.00033866* 0.425* 0.000332031* 0.000332031* 0.000332031* GPQEF

[maxelw]

Maximum number of edge

bundle tables entries

I 128* 128* 128* 128* 128* GPQLW

[etable]

Number of predefined edge

bundle tables entries

I 6 6 6 6 6 GPQPER

[index]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2 Continuous range is supported but you will get a 0 back on inquiry.

* See the text prior to this table for more information.

 Table 36. Edge Facilities Default Values

Edge Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Number of available edge line

types

I 16 13 7 7 5 GPQEF

[netype]

Available edge line types

(see Table)

E 1-16 1-13 1-7 1-7 1-4, 7 GPQEF

[eltype]

Number of available edge line

widths

I 1 1 2 Cont. range

supported1

Cont. range

supported1

GPQEF

[nelwidth]

Nominal edge width (in

meters)

R 0.000332031* 0.0002778* 0.0003428* 0.000269 0.00258* GPQEF

[elwidth]

Minimum edge width (in

meters)

R 0.000332031* 0.0002778* 0.0003428* 0.000269 0.00258* GPQEF

[minelw]

Maximum edge width (in

meters)

R 0.000332031* 0.0002778* 0.0003428* 0.2582728 0.2582728 GPQEF

[maxelw]

Maximum number of edge

bundle tables entries

I 128* 20 20 20 20 GPQLW

[etable]

Number of predefined edge

bundle tables entries

I 6 6 6 6 6 GPQPER

[index]

Note:

1 Continuous range is supported but you will get a 0 back on inquiry.

* See the text prior to this table for more information.

 Table 37. Predefined Edge Bundle

Table Entry Edge Flag Edge Line Type Edge Scale Factor Color Type Color Index

1 ON SOLID_LINE 1.0 INDEXED 1

2 ON SOLID_LINE 1.0 INDEXED 2

3 ON SOLID_LINE 1.0 INDEXED 3

4 ON SOLID_LINE 1.0 INDEXED 4

5 ON SOLID_LINE 1.0 INDEXED 5

6 ON SOLID_LINE 1.0 INDEXED 6

Chapter 3. Workstation Description Tables 91

Color Facilities

X

General Information Applying to All Adapters

v The number of available colors or intensities supported depend on the hardware configuration of your

workstation. Use the Inquire Color Facilities (GPQCF) subroutine to obtain the color facilities supported

on your workstation.

v The default color table identifier is -1=DISPLAY_COLOR_TABLE, with the following exceptions:

– When the Direct Color (DIRCOLOR) procopt or the Do Not Create an X Color Map (XNOCLRMP) procopt

is specified with the X Window Identifier (XWINDID) procopt, the default color table identifier is

0=RENDERING_COLOR_TABLE. See the PROCOPTS Section in Chapter 7 for details on the DIRCOLOR,

XNOCLRMP, and XWINDID procopts.

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

POWER GXT550P, POWER GXT500, POWER GXT255P, or POWER GXT250P

v The list of colors for each frame buffer component is dependent on the visual class (8 bit versus 24 bit).

XLIB (non-DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v Color availability depends on the hardware configuration of your workstation.

v The maximum number of display color table entries you can define is 256; however, 16 are supported

for a 4 bit display device.

v Color Graphics Display Adapter (8-bit)

– The list of colors for each frame buffer component is 3,3,2; however, the list is 1,2,1 for 4 bit

double-buffer mode.

XSOFT

The list of colors for each frame buffer component is dependent on the visual class.

6090

The number of definable color processing table entries supported depends on the hardware configuration

of your workstation. Use the Inquire Color Facilities (GPQCF) subroutine to obtain the color facilities

supported on your workstation.

The list of colors for each frame buffer component is 8,8,8 for 24 bit single-buffer mode and 3,3,2 for 8 bit

double-buffer mode.

5080

The number of available colors or intensities, color availability, and the maximum number of predefined

display color table entries supported depend on the hardware configuration of your workstation. Use the

Inquire Color Facilities (GPQCF) subroutine to obtain the color facilities supported on your workstation.

The use of any of the 5086 windowing features or selective pick through SETUP panel 01-01 will reserve

color table entries 120-127 for hardware use. Applications using these color table entries with this feature

will produce unexpected display results.

92 The graPHIGS Programming Interface: Technical Reference

GDDM

The number of available colors or intensities, and color availability supported depend on the hardware

configuration of your workstation. Use the Inquire Color Facilities (GPQCF) subroutine to obtain the color

facilities supported on your workstation.

IMAGE

The maximum number of available colors or intensities that can be represented in the output file is 2553.

displayed is dependent on the output device and the image output format. You can set the image output

format via the Image Output Format (IMAGEFMT) procopt.

For more information on color and the IMAGE workstation, see The IMAGE Workstation.

GDF

The maximum number of available colors or intensities that can be represented in the output metafile is

16. The actual number displayed is dependent on the output device and the metafile interpreter.

CGM

The maximum number of available colors or intensities that can be represented in the output metafile is

109. The actual number displayed is dependent on the output device and the metafile interpreter.

The line color, text color (for annotation text only), fill color, and edge color each has a value between 0

and the maximum color index.

For CGM metafile and picture descriptor element information on color, see Delimiter Elements and Picture

Descriptor Elements.

 Table 38. Color Facilities - X Workstation Default Values

Color Facilities Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA Adapters1 XSOFT

Adapters1

XLIB Adapters Inquiry

Number of available colors or

intensities

I 16,777,216* 16,777,216* 16,777,216* 16,777,216* 16,777,216* GPQCF [ncolor]

Color availability (1=MONOCHROME,

2=COLOR)

E COLOR COLOR COLOR COLOR COLOR* GPQCF [avcolor]

Number of available rendering

color models

I 2 2 2 2 1 GPQRCM

[totnum]

Rendering color models

(1=RGB_NORMAL, 2=RGB_B_ONLY)

E RGB_ NORMAL,

RGB_ B_ ONLY

RGB_ NORMAL,

RGB_ B_ ONLY

RGB_ NORMAL,

RGB_ B_ ONLY

RGB_ NORMAL,

RGB_ B_ ONLY

RGB_ NORMAL GPQRCM [model]

Number of available color

quantization methods

I 1 1 1 1 1 GPQCQM [totum]

Color quantization methods

(1=WORKSTATION_ DEPENDENT,

2=BITWISE)

E BITWISE BITWISE BITWISE BITWISE BITWISE GPQCQM

[method]

Number of definable color

processing table entries2

I 15 15 15 15 15 GPQCPF [entry]

Default color table identifier

(-1=DISPLAY_COLOR_TABLE,

0=RENDERING_COLOR_TABLE)

E RENDER-

ING_

COLOR_

TABLE*

DISPLAY_

COLOR_

TABLE*

DISPLAY_

COLOR_

TABLE*

DISPLAY_

COLOR_

TABLE*

DISPLAY_

COLOR_

TABLE*

GPQCID [ctid]

Color table characteristics

(1=NEITHER_MODIFIABLE,

2=ONLY_DISPLAY_MODIFIABLE,

3=ONLY_RENDERING_MODIFIABLE,

4=BOTH_MODIFIABLE)

E ONLY_

RENDERING_

MODIFIABLE

BOTH_

MODIFIABLE

BOTH_

MODIFIABLE

BOTH_

MODIFIABLE

BOTH_

MODIFIABLE

GPQXCF

[charact]

Maximum number of display color

table entries

I 8 bit: 256

24 bit: N/A

256 8 bit: 256*

24 bit: 256

8 bit: 256

12 bit: 64

24 bit: 256

256* GPQCCH [length]

Number of predefined display

color table entries

I 8 8 8 8 8 GPQCF [npred]

Maximum number of rendering

color table entries

I 256 256 256 256 256 GPQCCH [length]

Number of predefined rendering

color table entries

I 0 0 0 0 0 GPQCF [npred]

Chapter 3. Workstation Description Tables 93

Table 38. Color Facilities - X Workstation Default Values (continued)

Color Facilities Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA Adapters1 XSOFT

Adapters1

XLIB Adapters Inquiry

Color processing mode (1=RGB,

2=BGR)

E RGB RGB RGB RGB RGB GPQLCF [data]

List of colors for each frame buffer

component

n[default]1 8,8,8 8 bit: 3,3,2*

24 bit: 8,8,8

Where supported

8 bit: 3,3,2*

24 bit: 8,8,8*

Where supported

8 bit: 3,3,2*

12 bit: 4,4,4*

24 bit: 8,8,8*

3,2,2

Note:

1 See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2 Entry 0 cannot be modified.

* See the text prior to this table for more information.

 Table 39. Color Facilities Default Values

Color Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Number of available colors or

intensities

I 16,777,216 32,768* 16* 16* 109 .* GPQCF

[ncolor]

Color availability

(1=MONOCHROME, 2=COLOR)

E COLOR COLOR* COLOR* COLOR COLOR GPQCF

[avcolor]

Number of available rendering

color models

I 2 1 1 1 1 GPQRCM

[totnum]

Rendering color models (1=

RGB_ NORMAL, 2= RGB_ B_

ONLY)

E RGB_ NORMAL,

RGB_ B_ ONLY

RGB_ NORMAL RGB_ NORMAL RGB_ NORMAL RGB_ NORMAL GPQRCM

[model]

Number of available color

quantization methods

I 1 1 1 1 1 GPQCQM

[totum]

Color quantization methods

(1=WORKSTATION_ DEPENDENT,

2=BITWISE)

E BITWISE BITWISE WORKSTATION

DEPENDENT

WORKSTATION

DEPENDENT

BITWISE GPQCQM

[method]

Number of definable color

processing table entries1

I 15* 0 0 0 15 GPQCPF

[entry]

Default color table identifier

(-1= DISPLAY_ COLOR_ TABLE,

0= RENDERING_ COLOR_ TABLE)

E DISPLAY_

COLOR_ TABLE

DISPLAY_

COLOR_ TABLE

RENDERING_

COLOR_ TABLE

RENDERING_

COLOR_ TABLE

RENDERING_

COLOR_ TABLE

GPQCID [ctid]

Color table characteristics

(1=NEITHER_ MODIFIABLE,

2=ONLY_ DISPLAY_

MODIFIABLE, 3=ONLY_

RENDERING_ MODIFIABLE,

4=BOTH_ MODIFIABLE)

E BOTH_

MODIFIABLE

BOTH_

MODIFIABLE

ONLY_

RENDERING_

MODIFIABLE

ONLY_

RENDERING_

MODIFIABLE

BOTH_

MODIFIABLE

GPQXCF

[charact]

Maximum number of display

color table entries

I 256 128* 0 0 256 GPQCCH

[length]

Number of predefined display

color table entries

I 8 8 0 0 8 GPQCF

[npred]

Maximum number of

rendering color table entries

I 256 256 256 256 256 GPQCCH

[length]

Number of predefined

rendering color table entries

I 0 0 8 8 0 GPQCF

[npred]

Color processing mode

(1=RGB, 2=BGR)

E RGB RGB RGB RGB RGB GPQLCF

[data]

List of colors for each frame

buffer component

n[default]1 8,8,8* 3,2,2 N/A N/A N/A

Note:

1 Entry 0 cannot be modified.

* See the text prior to this table for more information.

94 The graPHIGS Programming Interface: Technical Reference

Table 40. Default Color Tables

Color Tables Entry Red Green Blue Color

0 0.0 0.0 0.0 Black

1 1.0 1.0 1.0 White

2 1.0 0.0 0.0 Red

3 0.0 1.0 0.0 Green

4 0.0 0.0 1.0 Blue

5 1.0 1.0 0.0 Yellow

6 1.0 0.0 1.0 Magenta

7 0.0 1.0 1.0 Cyan

Generalized Drawing Primitive (GDP) Facilities

X

General Information Applying to All Adapters

Polygon with Data Primitives (GDPs 1016 and 1017): The primitive supports optional data that indicates

that the application determined the convexity of the polygon. Specifying this optional data with the primitive

definition enables better performance because the system rendering code does not have to determine the

convexity of the polygon each time the polygon is rendered. To determine the convexity of a set of

polygons, the graPHIGS API on the RS/6000 contains a sample program under the operating system

directory:

/usr/lpp/graPHIGS/samples/convexcheck

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

In addition to the general capabilities supported by all adapters:

v The list of Generalized Drawing Primitives (GDPs) including the advanced Drawing Primitives are

supported.

v All DWA Adapters except the POWER GTO:

– Composite Fill Areas (GDP 1027) are not supported.

v POWER GTO:

– Composite Fill Areas with edge flag set to 1=OFF, will display edges.

v POWER Gt4x (8 bit or 24 bit):

– Polyline Set 3 With Data (GDP 1014) is not supported.

6090

If you are using the shading feature (HLHSR mode is set to 2=ON_THE_FLY, or depth cue mode is set to

2=ALLOWED, or lighting calculation mode is set to 2=PER_AREA or 3=PER_VERTEX) with Polygon 2/3 with Data,

the boundary of the polygon that is defined by the vertex data is assumed to be non-intersecting. If the

boundary intersects itself, the visual effect is indeterminate. See The graPHIGS Programming Interface:

Understanding Concepts for more details.

Composite Fill Areas with edge flag set to 1=OFF, will display edges.

5080

The number of available generalized drawing primitives supported depends on the hardware configuration

of your workstation. Use the Inquire List of Generalized Drawing Primitives (GPQGD) subroutine to obtain

the generalized drawing primitives supported on your workstation.

Chapter 3. Workstation Description Tables 95

Table 41. Generalized Drawing Primitives (GDP) Facilities - X Workstation Defaults

Generalized Drawing Primitive

Facilities

Data Type IMAGE POWER GT4

Family and

POWER

GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Number of available generalized drawing

primitives

I 26 27* 26 26 18 GPQGD

[totnum]

Available generalized drawing primitives

(see Table 36)

E 1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010,

1014, 1016,*

1017, 1020,

1021, 1022,

1023, 1029,

1031, 1033,

1034, 1035,

1036, 1037,

1039, 1046

1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010,

1014,* 1016,*

1017,* 1020,

1021, 1022,

1023, 1027,*

1029, 1031,

1033, 1034,

1035, 1036,

1037, 1039,

1046

1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010,

1014, 1016,*

1017,* 1020,

1021, 1022,

1023, 1029,

1031, 1033,

1034, 1035,

1036, 1037,

1039, 1046

1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010,

1014, 1016,*

1017,* 1020,

1021, 1022,

1023, 1029,

1031, 1033,

1034, 1035,

1036, 1037,

1039, 1046

1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010,

1022, 1023,

1033, 1034,

1035, 1036,

1039, 1046

GPQGD

[gdpid]

Note:

1 See the text prior to Table 8, General Workstation Facilities, for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 42. Generalized Drawing Primitives (GDP) Facilities Default Values

Generalized Drawing Primitive

Facilities

Data Type 6090 5080 GDDM GDF CGM Inquiry

Number of available generalized drawing

primitives

I 25 10* 10 15 15 GPQGD

[totnum]

Available generalized drawing primitives

see table

E 1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010,

1016,* 1017,*

1020, 1021,

1022, 1023,

1027, 1029,

1033, 1034,

1035, 1036,

1037, 1039,

1046

1001, 1002,

1003, 1004,

1005,* 1006,*

1007,* 1008,*

1009,* 1010*

1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010

1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010,

1033, 1034,

1035, 1036,

1046

1001, 1002

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1010,

1033, 1034,

1035, 1036,

1046

GPQGD

[gdpid]

Note: See the text prior to this table for more information.

 Table 43. Available Generalized Drawing Primitives

Decimal Value Description

1001 Pixel 3

1002 Pixel 2

1003 Disjoint polyline 3

1004 Disjoint polyline 2

1005 Circle 2

1006 Circular arc 2

1007 Ellipse 2

1008 Ellipse 3

1009 Elliptical arc 2

1010 Elliptical arc 3

1014 Polyline set 3 with data

96 The graPHIGS Programming Interface: Technical Reference

Table 43. Available Generalized Drawing Primitives (continued)

Decimal Value Description

1016 Polygon 3 with data

1017 Polygon 2 with data

1020 Marker grid 3

1021 Marker grid 2

1022 Line grid 3

1023 Line grid 2

1027 Composite fill area 2

1029 Triangle strip 3

1031 Quadrilateral mesh 3

1033 Non-uniform B-spline curve 3

1034 Non-uniform B-spline curve 2

1035 Non-uniform B-spline surface

1036 Trimmed non-uniform B-spline surface

1037 Polyhedron edge

1039 Character line 2

1046 Polysphere

Generalized Structure Element (GSE) Facilities

X

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

All DWA Adapters except the POWER GTO:

v The z-buffer protect mask is supported.

POWER Gt4x (8 bit or 24 bit):

v Frame Buffer Comparison: The mask parameter specified on this structure element is not supported.

v The z-buffer protect mask is supported.

POWER GTO:

v The z-buffer mask is not supported.

XLIB (non-DWA) Capabilities on the RS/6000 ONLY:

v The z-buffer protect mask is not supported.

v Only the set frame buffer protect mask is supported.

XSOFT

The z-buffer protect mask is supported.

IMAGE

The z-buffer protect mask is supported.

Chapter 3. Workstation Description Tables 97

Table 44. Generalized Structure Element (GSE) Facilities - X Default Values

Generalized Structure Element

Facilities

Data Type IMAGE POWER GT4

Family and

POWER

GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Number of available generalized

structure elements

I 11* 9* 11* 11* 2 GPQGSE

[totnum]

Available generalized structure elements E 1001, 1002,*

1003, 1004,

1005, 1006,

1007, 1008,

1009*, 1011,

1012

1001, 1002,*

1003, 1004,

1005, 1006,

1007, 1008,

1009*

1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1011,

1012

1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008,

1009, 1011,

1012

1001, 1008 GPQGSE

[gseid]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 45. Generalized Structure Element (GSE) Facilities Default Values

Generalized Structure Element

Facilities

Data Type 6090 5080 GDDM GDF CGM Inquiry

Number of available generalized

structure elements

I 8 0 0 1 2 GPQGSE

[totnum]

Available generalized structure elements E 1001, 1002,

1003, 1004,

1005, 1006,

1007, 1008

N/A N/A 1008, 1013 1008, 1010,

1013

GPQGSE

[gseid]

Note: See the text prior to this table for more information.

 Table 46. GSE Values

Decimal Value Description

1001 Set frame buffer protect mask

1002 Set frame buffer comparison

1003 Set condition

1004 Conditional execute structure

1005 Conditional return

1006 Text extent 3

1007 Text extent 2

1008 Parametric surface characteristics

1009 Z-buffer protect mask

1010 Workstation-dependent output

1011 Line-on-line color direct

1012 Line-on-line color index

1013 Text line width

Escape Facilities

5080

v When a user switches the 5080 between S/390 host interactive mode and PC mode, the workstation

state (display storage, color look-up table, memory management control, etc.) is not preserved.

98 The graPHIGS Programming Interface: Technical Reference

Your application should ensure that no functions are performed while the user is in non-host or PC

mode. By closing and re-opening the workstation when a user switches, you avoid unpredictable results

and I/O errors.

Your application can monitor the link switch status by using Escape identifier 1002, Enable/Disable

(GPES). When a user switches to PC mode, keep the workstation open but allow no update or I/O

operations. When the user switches back to host mode, close and re-open the workstation immediately.

GDF/CGM

v Escape identifier 1003 (GDF/CGM Plot Size) allows your application to directly specify the width of the

plotted output. The plotting utility provided with the graPHIGS API uses this information to correctly plot

the GDF/CGM contents.

CGM

v Escape identifier 1014 (Workstation-Dependent Output) allows your application to directly render data to

the workstation. It is the application’s responsibility to ensure that the data is valid (proper length(s),

identifiers, padding, etc.). For more information, see Workstation Dependent Output or the Escape

(GPES) subroutine.

 Table 47. Escape Facilities - X Workstation Default Values

Escape Facilities Data Type IMAGE POWER GT4

Family and

POWER

GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Number of available escapes I 1 10 10 10 10 GPQES

[number]

Available escapes E 1008 1001, 1004,

1005, 1007,

1008, 1009,

1010, 1011,

1012, 1015

1001, 1004,

1005, 1007,

1008, 1009,

1010, 1011,

1012, 1015

1001, 1004,

1005, 1007,

1008, 1009,

1010, 1011,

1012, 1015

1001, 1004,

1005, 1007,

1008, 1009,

1010, 1011,

1012, 1015

GPQES

[idlist]

Note:

1 See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 Table 48. Escape Facilities Default Values

Escape Facilities Data Type 6090 5080 GDDM GDF CGM Inquiry

Number of available escapes I 6 2 1 1 2 GPQES

[number]

Available escapes E 1001, 1004,

1005, 1006,

1007, 1008

1001, 1002 1001 1003 1003, 1014 GPQES

[idlist]

 Table 49. Escape Values

Decimal Value Description

1001 Sound alarm

1002 Enable/disable link switch

1003 GDF/CGM plot size

1004 Initialize pick correlation state

1005 Set pick selection criteria

1006 Set input echo color

1007 Read frame buffer

1008 Geometric text culling

1009 Window resize notification control

1010 Inquire mapped display surface

1011 Window exposure notification control

Chapter 3. Workstation Description Tables 99

Table 49. Escape Values (continued)

Decimal Value Description

1012 Window deletion notification control

1014 Workstation-Dependent output

1015 Convert coordinate values

Image Facilities

For image facilities that may be supported by the graPHIGS API, see the Image Board Facilities in .

 Table 50. Image Facilities - X Workstation Default Values

Image Facilities Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Number of available image

connections

I 3 3 3 3 3 GPQIDF

[totnum]

Available image connections

(-1=FRAME_ BUFFER_

COMPATIBLE, 2=COMPONENT,

3=INDEXED)

E FRAME_

BUFFER_

COMPATIBLE,

COMPONENT,

INDEXED

FRAME_

BUFFER_

COMPATIBLE,

COMPONENT,

INDEXED

FRAME_

BUFFER_

COMPATIBLE,

COMPONENT,

INDEXED

FRAME_

BUFFER_

COMPATIBLE,

COMPONENT,

INDEXED

FRAME_

BUFFER_

COMPATIBLE,

COMPONENT,

INDEXED

GPQIDF

[conn]

Number of available image

mapping methods

I 1 1 1 1 1 GPQIMF

[totnum]

Available image mapping

methods (1=PIXEL_ BY_

PIXEL)

E PIXEL_BY_

PIXEL

PIXEL_BY_

PIXEL

PIXEL_BY_

PIXEL

PIXEL_BY_

PIXEL

PIXEL_BY_

PIXEL

GPQIMF

[method]

Number of image mapping

priorities supported

I Cont. range

supported2

Cont. range

supported2

Cont. range

supported2

Cont. range

supported2

Cont. range

supported2

GPQIMF

[nprio]

Maximum number of definable

images

I 64 64 64 64 64 GPQIDF

[nimage]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2 Continuous range is supported but you will get a 0 back on inquiry.

 Table 51. Image Facilities

Image Facilities Default Values Data Type 6090 5080 GDDM GDF CGM Inquiry

Number of available image connections I 1 0 0 0 0 GPQIDF

[totnum]

Available image connections

(1=FRAME_BUFFER_COMPATIBLE,

2=COMPONENT, 3=INDEXED)

E FRAME_

BUFFER_

COMPATIBLE

N/A N/A N/A N/A GPQIDF

[conn]

Number of available image mapping

methods

I 1 0 0 0 0 GPQIMF

[totnum]

Available image mapping methods

(1=PIXEL_BY_PIXEL)

E PIXEL_ BY_

PIXEL

N/A N/A N/A N/A GPQIMF

[method]

Number of image mapping priorities

supported

I Cont. range

supported1

N/A N/A N/A N/A GPQIMF

[nprio]

Maximum number of definable images I 64 0 0 0 0 GPQIDF

[nimage]

Note:

1 Continuous range is supported but you will get a 0 back on inquiry.

100 The graPHIGS Programming Interface: Technical Reference

Advanced Output Facilities

X

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

v The number of light source table entries can be increased via the Light Source Table (LSTES) procopt.

See LSTES (Light Source Table).

v The number of definable depth cue table entries can be increased via the Depth Cue Table (DCTES)

procopt. See DCTES (Depth Cue Table).

v POWER GTO (8 bit or 24 bit) or POWER Gt4x (8 bit or 24 bit):

– An ambient light source plus eight other light sources are available. Up to four of the eight light

sources can be spotlight sources.

– The POWER GTO is limited to 64 control points in the u direction for a NURB or trimmed NURB

surface. A NURB surface primitive with more than 64 control points in the u direction is ignored at

traversal.

– The POWER GTO supports spot light concentration exponent values that are a power of 2. Any

value specified will be mapped to the closest power of 2 supported.

– The POWER GTO performs lighting calculations in View Coordinates rather than World Coordinates.

These calculations are adjusted to account for the difference in the coordinates. However, if the view

transformation is not isotropic (i.e. is not a uniform mapping in X, Y, and Z), then the adjustment is

not sufficient and the lighting results may differ from other workstations that perform lighting in World

Coordinates.

XSOFT

v The number of light source table entries can be increased via the Light Source Table (LSTES) procopt.

See LSTES (Light Source Table).

v The number of definable depth cue table entries can be increased via the Depth Cue Table (DCTES)

procopt. See DCTES (Depth Cue Table).

6090

v The number of light source table entries can be increased via the Light Source Table (LSTES) procopt.

See LSTES (Light Source Table).

v The number of definable depth cue table entries can be increased via the Depth Cue Table (DCTES)

procopt. See DCTES (Depth Cue Table).

v An ambient light source plus eight other light sources are available. Up to four of the eight light sources

can be spotlight sources.

v The specular reflection exponent is mapped to a power of 2.

v The Set Face Lighting Method (GPFLM) subroutine is not supported. Lighting processing is always face

lighting method 2=FACE_DEPENDENT.

 Table 52. Advanced Output Facilities - X Workstation Default Values

Advanced Output Facilities Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Number of available light

source types

I 4 8 bit: 4

24 bit: 0

4 4 0 GPQLSF

[totnum]

Available light source types

(1=AMBIENT, 2=DIRECTIONAL,

3=POSITIONAL, 4=SPOT)

E AMBIENT,

DIRECTIONAL,

POSITIONAL,

SPOT

AMBIENT,

DIRECTIONAL,

POSITIONAL,

SPOT

AMBIENT,

DIRECTIONAL,

POSITIONAL,

SPOT

AMBIENT,

DIRECTIONAL,

POSITIONAL,

SPOT

N/A GPQLSF

[ltype]

Chapter 3. Workstation Description Tables 101

Table 52. Advanced Output Facilities - X Workstation Default Values (continued)

Advanced Output Facilities Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Maximum number of

simultaneously active

non-ambient light sources

I 8 8 8 8 0 GPQLSF

[maxa]

Maximum number of light

source table entries

I 32 32* 32* 32* 0 GPQLSF

[maxe]

Number of predefined light

source table entries

I 0 0 0 0 0 GPQLSF

[npred]

Maximum number of definable

depth cue table entries2

I 15 15* 15* 15* 0 GPQDCF

[entry]

Number of predefined depth

cue table entries

I 1 1 1 1 1 GPQDCF

[npred]

Maximum number of definable

cull size table entries

I 16 16 16 16 0 GPQCSF

[entry]

Number of predefined cull size

table entries

I 0 0 0 0 0 GPQCSF

[npred]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2 Entry 0 cannot be modified.

 * See the text prior to this table for more information.

 Table 53. Advanced Output Facilities Default Values

Advanced Output Facilities Data

Type

6090 5080 GDDM GDF CGM Inquiry

Number of available light source

types

I 4 0 0 0 0 GPQLSF

[totnum]

Available light source types

(1=AMBIENT, 2=DIRECTIONAL,

3=POSITIONAL, 4=SPOT)

E AMBIENT,

DIRECTIONAL,

POSITIONAL,

SPOT

N/A N/A N/A N/A GPQLSF [ltype]

Maximum number of

simultaneously active

non-ambient light sources

I 8* 0 0 0 0 GPQLSF

[maxa]

Maximum number of light

source table entries

I 32* 0 0 0 0 GPQLSF

[maxe]

Number of predefined light

source table entries

I 0 0 0 0 0 GPQLSF

[npred]

Maximum number of definable

depth cue table entries1

I 15* 0 0 0 0 GPQDCF

[entry]

Number of predefined depth cue

table entries

I 1 1 1 1 1 GPQDCF

[npred]

Maximum number of definable

cull size table entries

I 16 0 0 0 0 GPQCSF

[entry]

Number of predefined cull size

table entries

I 0 0 0 0 0 GPQCSF

[npred]

Note:

1 Entry 0 cannot be modified.

* See the text prior to this table for more information.

102 The graPHIGS Programming Interface: Technical Reference

Curve and Surface Facilities

 Table 54. Curve and Surface Facilities - X Default Values

Curve and Surface Facilities Data

Type

IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Number of available curve

approximation criteria

I 3 3 3 3 3 GPQCDF

[totnum]

Available curve approximation criteria

(1=WORKSTATION_DEPENDENT,

3=CONSTANT_SUBDIVISION_

BETWEEN_KNOTS,

8=VARIABLE_SUBDIVISION_

BETWEEN_KNOTS)

E WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

GPQCDF

[criteria]

Maximum order of trimming curve for

trimmed B-Spline surface

I 26 26 26 26 26 GPQCDF

[maxo]

Number of available surface

approximation criteria

I 3 3 3 3 3 GPQSDF

[totnum]

Available surface approximation

criteria (1=WORKSTATION_DEPENDENT,

3=CONSTANT_SUBDIVISION_

BETWEEN_KNOTS,

8=VARIABLE_SUBDIVISION_

BETWEEN_KNOTS)

E WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION

_ BETWEEN_

KNOTS

GPQSDF

[criteria]

Maximum order for non-uniform

B-Spline surface

I 26 26 26 26 26 GPQSDF

[maxo]

Number of available trimmed curve

criteria

I 3 3 3 3 3 GPQTDF

[totnum]

Available trimmed curve criteria

(1=WORKSTATION_DEPENDENT,

3=CONSTANT_SUBDIVISION_

BETWEEN_KNOTS,

8=VARIABLE_SUBDIVISION_

BETWEEN_KNOTS)

E WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK- STATION_

DEPENDENT,

CONSTANT_ SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_ SUB-

DIVISION_

BETWEEN_ KNOTS

GPQTDF

[criteria]

Maximum order for trimmed B-spline

surface

I 26 26 26 26 26 GPQTDF

[maxo]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 Table 55. Curve and Surface Facilities Default Values

Curve and Surface Facilities Data

Type

6090 5080 GDDM GDF CGM Inquiry

Number of available curve

approximation criteria

I 3 0 0 3 3 GPQCDF

[totnum]

Chapter 3. Workstation Description Tables 103

Table 55. Curve and Surface Facilities Default Values (continued)

Curve and Surface Facilities Data

Type

6090 5080 GDDM GDF CGM Inquiry

Available curve approximation criteria

(1=WORKSTATION_DEPENDENT,

3=CONSTANT_SUBDIVISION_

BETWEEN_KNOTS,

8=VARIABLE_SUBDIVISION_

BETWEEN_KNOTS)

E WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

N/A N/A WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

GPQCDF

GPQCDF

[criteria]

Maximum order of trimming curve for

trimmed B-Spline surface

I 26 N/A N/A 26 26 GPQCDF

[maxo]

Number of available surface

approximation criteria

I 3 0 0 3 3 GPQSDF

[totnum]

Available surface approximation

criteria (1=WORKSTATION_DEPENDENT,

3=CONSTANT_SUBDIVISION_

BETWEEN_KNOTS,

8=VARIABLE_SUBDIVISION_

BETWEEN_KNOTS)

E WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

N/A N/A WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

GPQSDF

[criteria]

Maximum order for non-uniform

B-Spline surface

I 26 N/A N/A 26 26 GPQSDF

[maxo]

Number of available trimmed curve

criteria

I 3 0 0 3 3 GPQTDF

[totnum]

Available trimmed curve criteria

(1=WORKSTATION_DEPENDENT,

3=CONSTANT_SUBDIVISION_

BETWEEN_KNOTS,

8=VARIABLE_SUBDIVISION_

BETWEEN_KNOTS)

E WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

N/A N/A WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

WORK-

STATION_

DEPENDENT,

CONSTANT_

SUB-

DIVISION_

BETWEEN_

KNOTS,

VARIABLE_

SUB-

DIVISION_

BETWEEN_

KNOTS

GPQTDF

[criteria]

Maximum order for trimmed B-spline

surface

I 26 N/A N/A 26 26 GPQTDF

[maxo]

Advanced Attribute Facilities

X

Direct Window Access (DWA) Capabilities on the RS/6000 ONLY

v The advanced rendering attributes are supported.

v When drawing a wide line with a line type other than 1=SOLID_LINE, the line end type is always 1=FLAT.

v POWER GTO (8 bit or 24 bit) or POWER Gt4x (8 bit or 24 bit):

– On the POWER Gt4x, the specified end type is ignored for lines of width <=5 pixels. These lines are

drawn ″stacked″ on top of each other, so that the lines resemble a parallelogram with the ends

always being vertical.

104 The graPHIGS Programming Interface: Technical Reference

XLIB (non-DWA) Capabilities on the RS/6000 ONLY

v The advanced rendering attributes are not supported.

v Color Graphics Display Adapter:

– Only polyhedron edge culling mode 1=NONE is supported.

XSOFT

v The advanced rendering attributes are supported.

v When drawing a wide line with a line type other than 1=SOLID_LINE, the line end type is always 1=FLAT.

6090

v The lighting calculation modes supported depend on the hardware configuration of your workstation.

Use the Inquire Advanced Attribute Facilities (GPQAAF) subroutine to obtain the lighting calculation

modes supported on your workstation.

v When an end type of 2=ROUND or 3=SQUARE is applied to wide lines, only a line type of 1=SOLID_LINE is

supported.

 Table 56. Advanced Attribute Facilities - X Workstation Default Values

Advanced Attribute

Facilities

Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Supported edge flag

enumeration

(1=OFF,

2=ON,

3=GEOMETRY_ ONLY)

E OFF,

ON,

GEOMETRY_

ONLY

OFF,

ON,

GEOMETRY_

ONLY

OFF,

ON,

GEOMETRY_

ONLY

OFF,

ON,

GEOMETRY_

ONLY

OFF,

ON

GPQAAF

[enum]

Supported face distinguish

mode enumerations

(1=NONE,

2=COLOR_ SURFACE_

PROPERTIES)

E NONE,

COLOR_

SURFACE_

PROPERTIES

NONE,

COLOR_

SURFACE_

PROPERTIES

NONE,

COLOR_

SURFACE_

PROPERTIES

NONE,

COLOR_

SURFACE_

PROPERTIES

NONE GPQAAF

[enum]

Supported lighting calculation

mode enumeration

(1=NONE,

2=PER_ AREA,

3=PER_ VERTEX)

E NONE,

PER_AREA,

PER_VERTEX

NONE,

PER_AREA,

PER_VERTEX

NONE,

PER_AREA,

PER_VERTEX

NONE,

PER_AREA,

PER_VERTEX

NONE GPQAAF

[enum]

Supported reflectance modes

(1=REFLECTANCE_ NONE,

2=AMB,

3=AMB_ DIFF,

4=AMB_ DIFF_ SPEC)

E REFLECTANCE_

NONE,

AMB,

AMB_ DIFF,

AMB_ DIFF_

SPEC

N/A REFLECTANCE_

NONE,

AMB,

AMB_ DIFF,

AMB_ DIFF_

SPEC

REFLECTANCE_

NONE,

AMB,

AMB_ DIFF,

AMB_ DIFF_

SPEC

N/A GPQAAF

[enum]

Supported interior shading

methods

(1=SHADING_ NONE,

2=SHADING_ COLOR,

3=SHADING_ DATA)

E SHADING_

NONE,

SHADING_

COLOR,

SHADING_ DATA

N/A SHADING_

NONE,

SHADING_

COLOR

SHADING_

NONE,

SHADING_

COLOR,

SHADING_ DATA

N/A GPQAAF

[enum]

Supported polygon culling

enumeration

(1=NONE,

2=BACK,

3=FRONT)

E NONE,

BACK,

FRONT

NONE,

BACK,

FRONT

NONE,

BACK,

FRONT

NONE,

BACK,

FRONT

NONE GPQAAF

[enum]

Supported polyhedron edge

culling enumeration

(1=NONE,

2=BOTH_ BACK,

3=BOTH_ FRONT,

4=BOTH_ BACK_ OR_ BOTH_

FRONT,

5=BACK_ AND_ FRONT,

6=LEAST_ ONE_ BACK,

7=LEAST_ ONE_ FRONT)

E NONE,

BOTH_ BACK,

BOTH_ FRONT,

BOTH_ BACK_

OR_ BOTH_

FRONT,

BACK_ AND_

FRONT,

LEAST_ ONE_

BACK,

LEAST_ ONE_

FRONT

NONE,

BOTH_ BACK,

BOTH_ FRONT,

BOTH_ BACK_

OR_

BOTH_ FRONT,

BACK_ AND_

FRONT,

LEAST_ ONE_

BACK,

LEAST_ ONE_

FRONT

NONE,

BOTH_ BACK,

BOTH_ FRONT,

BOTH_ BACK_

OR_

BOTH_ FRONT,

BACK_ AND_

FRONT,

LEAST_ ONE_

BACK,

LEAST_ ONE_

FRONT

NONE,

BOTH_ BACK,

BOTH_ FRONT,

BOTH_ BACK_

OR_

BOTH_ FRONT,

BACK_ AND_

FRONT,

LEAST_ ONE_

BACK,

LEAST_ ONE_

FRONT

NONE GPQAAF

[enum]

Chapter 3. Workstation Description Tables 105

Table 56. Advanced Attribute Facilities - X Workstation Default Values (continued)

Advanced Attribute

Facilities

Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Supported polyline end type

enumeration

(1=FLAT,

2=ROUND,

3=SQUARE)

E FLAT,

ROUND,

SQUARE*

FLAT,

ROUND,

SQUARE*

FLAT,

ROUND,

SQUARE*

FLAT,

ROUND,

SQUARE*

FLAT GPQAAF

[enum]

Maximum number of modeling

clipping half-spaces

I 6 N/A 6 6 N/A GPQWDT

[odata]

Supported modeling clipping

operators

(1=REPLACE_ VOLUME,

2=INTERSECT_ VOLUME)

E REPLACE_

VOLUME,

INTERSECT_

VOLUME

N/A REPLACE_

VOLUME,

INTERSECT_

VOLUME

REPLACE_

VOLUME,

INTERSECT_

VOLUME

N/A GPQWDT

[odata]

Supported transparency

facilities

(1=ALPHA BUFFER AVAILABLE)

E ALPHA BUFFER

AVAILABLE

N/A ALPHA BUFFER

AVAILABLE

ALPHA BUFFER

AVAILABLE

N/A GPQWDT

[odata]

Number of partial

transparency levels supported

I 17 N/A 17 17 N/A GPQWDT

[odata]

Supported source blending

functions

(1=SRCBF_ ZERO,

2=SRCBF_ ONE,

3=SRCBF_ SRC_ ALPHA,

4=SRCBF_ ONE_ MINUS_ SRC_

ALPHA,

5=SRCBF_ DST_ ALPHA,

6=SRCBF_ ONE_ MINUS_ DST_

ALPHA,

7=SRCBF_ DST_ COLOR,

8=SRCBF_ ONE_ MINUS_ DST_

COLOR,

9=SRCBF_ MIN_ SRC_ ALPHA_

ONE_ MINUS_ DST_ ALPHA)

E SRCBF_ ZERO,

SRCBF_ ONE,

SRCBF_ SRC_

ALPHA,

SRCBF_ ONE_

MINUS_ SRC_

ALPHA,

SRCBF_ DST_

ALPHA,

SRCBF_ ONE_

MINUS_ DST_

ALPHA,

SRCBF_ DST_

COLOR,

SRCBF_ ONE_

MINUS_ DST_

COLOR,

SRCBF_ MIN_

SRC_

ALPHA_ ONE_

MINUS_

DST_ ALPHA

N/A SRCBF_ ZERO,

SRCBF_ ONE,

SRCBF_ SRC_

ALPHA,

SRCBF_ ONE_

MINUS_ SRC_

ALPHA,

SRCBF_ DST_

ALPHA,

SRCBF_ ONE_

MINUS_ DST_

ALPHA,

SRCBF_ DST_

COLOR,

SRCBF_ ONE_

MINUS_ DST_

COLOR,

SRCBF_ MIN_

SRC_

ALPHA_ ONE_

MINUS_

DST_ ALPHA

SRCBF_ ZERO,

SRCBF_ ONE,

SRCBF_ SRC_

ALPHA,

SRCBF_ ONE_

MINUS_ SRC_

ALPHA,

SRCBF_ DST_

ALPHA,

SRCBF_ ONE_

MINUS_ DST_

ALPHA,

SRCBF_ DST_

COLOR,

SRCBF_ ONE_

MINUS_ DST_

COLOR,

SRCBF_ MIN_

SRC_

ALPHA_ ONE_

MINUS_

DST_ ALPHA

N/A GPQWDT

[odata]

Supported destination

blending functions

(1=DSTBF_ZERO,

2=DSTBF_ ONE,

3=DSTBF_ SRC_ ALPHA,

4=DSTBF_ ONE_ MINUS_ SRC_

ALPHA,

5=DSTBF_ DST_ ALPHA,

6=DSTBF_ ONE_ MINUS_ DST_

ALPHA, 7=DSTBF_ SRC_ COLOR,

8=DSTBF_ ONE_ MINUS_ SRC_

COLOR)

E DSTBF_ ZERO,

DSTBF_ ONE,

DSTBF_ SRC_

ALPHA,

DSTBF_ ONE_

MINUS_ SRC_

ALPHA,

DSTBF_ DST_

ALPHA,

DSTBF_ ONE_

MINUS_ DST_

ALPHA,

DSTBF_ SRC_

COLOR,

DSTBF_ ONE_

MINUS_ SRC_

COLOR

N/A DSTBF_ ZERO,

DSTBF_ ONE,

DSTBF_ SRC_

ALPHA,

DSTBF_ ONE_

MINUS_ SRC_

ALPHA,

DSTBF_ DST_

ALPHA,

DSTBF_ ONE_

MINUS_ DST_

ALPHA,

DSTBF_ SRC_

COLOR,

DSTBF_ ONE_

MINUS_ SRC_

COLOR

DSTBF_ ZERO,

DSTBF_ ONE,

DSTBF_ SRC_

ALPHA,

DSTBF_ ONE_

MINUS_ SRC_

ALPHA,

DSTBF_ DST_

ALPHA,

DSTBF_ ONE_

MINUS_ DST_

ALPHA,

DSTBF_ SRC_

COLOR,

DSTBF_ ONE_

MINUS_ SRC_

COLOR

N/A GPQWDT

[odata]

Number of morphing vectors

supported

I 4 N/A 4 4 N/A GPQWDT

[odata]

Maximum data mapping table

index

I 8 N/A 8 8 N/A GPQWDT

[odata]

Supported data mapping

methods

(-1=IMAGE_ ARRAY,

1=DM_ METHOD_ COLOR

2=SINGLE_ VALUE_ UNIFORM

4=BI_ VALUE_ UNIFORM)

E IMAGE_ ARRAY,

DM_ METHOD_

COLOR,

SINGLE_

VALUE_

UNIFORM,

BI_ VALUE_

UNIFORM

N/A DM_ METHOD_

COLOR

IMAGE_ ARRAY,

DM_ METHOD_

COLOR,

SINGLE_

VALUE_

UNIFORM,

BI_ VALUE_

UNIFORM

N/A GPQWDT

[odata]

106 The graPHIGS Programming Interface: Technical Reference

Table 56. Advanced Attribute Facilities - X Workstation Default Values (continued)

Advanced Attribute

Facilities

Data Type IMAGE POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB

Adapters

Inquiry

Supported data mapping data

color types

(1=TYPE_ COLOR,

2=TYPE_ PACKED_ RGB,

3=TYPE_ COLOR_ TRANS

4=TYPE_ PACKED_ RGB_ ALPHA)

E TYPE_ COLOR,

TYPE_ PACKED_

RGB,

TYPE_ COLOR_

TRANS,

TYPE_ PACKED_

RGB_ ALPHA

N/A N/A TYPE_ COLOR,

TYPE_ PACKED_

RGB,

TYPE_ COLOR_

TRANS,

TYPE_ PACKED_

RGB_ ALPHA

N/A GPQWDT

[odata]

Supported text encoding

methods

(1=UNICODE)

E 1=UNICODE 1=UNICODE 1=UNICODE 1=UNICODE 1=UNICODE GPQWDT

[odata]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 57. Advanced Attribute Facilities Default Values

Advanced Attribute

Facilities

Data Type 6090 5080 GDDM GDF CGM Inquiry

Supported edge flag

enumeration (1=OFF, 2=ON,

3=GEOMETRY_ONLY)

E OFF, ON,

GEOMETRY_

ONLY

OFF, ON OFF, ON OFF, ON OFF, ON GPQAAF

[enum]

Supported face distinguish

mode enumerations (1=NONE,

2=COLOR_SURFACE_

PROPERTIES)

E NONE, COLOR_

SURFACE_

PROPERTIES

NONE NONE NONE NONE GPQAAF

[enum]

Supported lighting calculation

mode enumeration (1=NONE,

2=PER_AREA, 3=PER_VERTEX)

E NONE,

PER_AREA,

PER_VERTEX *

NONE NONE NONE NONE GPQAAF

[enum]

Supported reflectance modes

(1=RELECTANCE_NONE, 2=AMB,

3=AMB_DIFF,

4=AMB_DIFF_SPEC)

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported interior shading

methods (1=SHADING_NONE,

2=SHADING_COLOR,

3=SHADING_DATA)

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported polygon culling

enumeration (1=NONE, 2=BACK,

3=FRONT)

E NONE, BACK,

FRONT

NONE NONE NONE NONE GPQAAF

[enum]

Supported polyhedron edge

culling enumeration (1=NONE,

2=BOTH_BACK, 3=BOTH_FRONT,

4=BOTH_BACK_OR_ BOTH_FRONT,

5=BACK_AND_FRONT,

6=LEAST_ONE_BACK,

7=LEAST_ONE_FRONT)

E NONE,

BOTH_BACK,

BOTH_ FRONT,

BOTH_BACK_

OR_BOTH

FRONT,

BACK_AND_

FRONT,

LEAST_ONE_

BACK,

LEAST_ONE_

FRONT

NONE NONE NONE NONE GPQAAF

[enum]

Supported polyline end type

enumeration (1=FLAT,

2=ROUND, 3=SQUARE)

E FLAT, ROUND,

SQUARE*

FLAT, ROUND,

SQUARE

FLAT FLAT FLAT GPQAAF

[enum]

Maximum number of modeling

clipping half-spaces

I N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported modeling clipping

operators (1=REPLACE_VOLUME,

2=INTERSECT_VOLUME)

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported transparency

facilities (1=ALPHA BUFFER

AVAILABLE)

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Chapter 3. Workstation Description Tables 107

Table 57. Advanced Attribute Facilities Default Values (continued)

Advanced Attribute

Facilities

Data Type 6090 5080 GDDM GDF CGM Inquiry

Number of transparency levels

supported

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported source blending

functions (1=SRCBF_ZERO,

2=SRCBF_ONE,

3=SRCBF_SRC_ALPHA,

4=SRCBF_ONE_MINUS_

DST_ALPHA,

5=SRCBF_DST_ALPHA,

6=SRCBF_ONE_MINUS_

DST_ALPHA,

7=SRCBF_DST_COLOR,

8=SRCBF_ONE_MINUS_

DST_COLOR,

9=SRCBF_MIN_SRC_ALPHA_

ONE_MINUS_DST_ ALPHA)

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported destination

blending functions

(1=DSTBF_ZERO, 2=DSTBF_ONE,

3=DSTBF_SRC_ALPHA,

4=DSTBF_ONE_MINUS_

SRC_ALPHA,

5=DSTBF_DST_ALPHA,

6=DSTBF_ONE_MINUS_DST_

ALPHA, 7=DSTBF_SRC_COLOR,

8=DSTBF_ONE_MINUS_SRC_

COLOR)

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Number of morphing vectors

supported

I N/A N/A N/A N/A N/A GPQWDT

[odata]

Maximum data mapping table

index

I N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported data mapping

methods (-1=IMAGE_ARRAY,

1=DM_METHOD_COLOR

2=SINGLE_VALUE_UNIFORM

4=BI_VALUE_UNIFORM)

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported data mapping data

color types (1=TYPE_COLOR,

2=TYPE_PACKED_RGB,

3=TYPE_COLOR_TRANS

4=TYPE_PACKED_RGB_ALPHA)

E N/A N/A N/A N/A N/A GPQWDT

[odata]

Supported text encoding

methods (1=UNICODE)

E N/A N/A N/A UNICODE UNICODE GPQWDT

[odata]

Note: See the text prior to this table for more information.

General Input Facilities

This section provides a description of the input device classes and the associated input trigger capabilities

and echo characteristics. For each supported device, the triggers are listed in the order the workstation

processes them (from the highest number secondary trigger proceeding toward and ending with the

primary trigger).

If the cursor controller is not in the echo area of an active device, an asterisk ’*’ indicates the position of

the input device. However, if a user-defined cursor from the cursor shape table is in use, there is no

change in the appearance of the cursor when it leaves the echo area.

The default echo color on all workstations is white. The default prompt/echo on all workstations is type=1.

108 The graPHIGS Programming Interface: Technical Reference

X and XSOFT

General Information Applying to All Adapters

v The number of available triggers, the range of qualifiers of your cursor controller or stylus, and the

number of valuator logical, choice logical, button physical and scalar physical input devices supported

depend on the hardware configuration of your workstation. If you do not have the lighted program

function keys (LPFKs) installed, then trigger type 1 is not available.

v Fixed cursor type -1 (cross hair) extends to the limits of the graPHIGS API window.

v The cursor shape table has two predefined shapes that are defined as follows:

– Entry 1 contains a cursor shape of a pointing hand.

– Entry 2 contains a cursor shape of a pointing arrow.

v Input character sets 1-5 and 7 are supported through character set 8 (multi-language).

v You can set the number of locator devices via the Locator Devices (LOCDEVS) procopt. See LOCDEVS

(Locator Devices). To set the number of string devices, use the String Devices (STRDEVS) procopt. See

STRDEVS (String Devices).

v The IBM 6094 Dial Model 10 and the IBM 6094 LPFKs Model 20 are supported through the Graphic

Input Device Adapter (2810) and its attachment cable (4015). These dials and LPFKs are also

supported through the serial port adapter (4060) and the direct attachment (4061).

v Engineering symbols are defined in the graPHIGS API font files for character sets 6 (Japanese

Katakana), 8 (Multi-Language), and 9 (Single-byte Korean), although no keyboard engineering symbols

are engraved on the RS/6000 keyboard. These engineering symbols are available for input through the

Alt + key sequence for English, Japanese, and Korean language environments, and the Alt-Gr + key

sequence for European language environments.

The graPHIGS API determines your language environment and keyboard from the variable LANG. The

following table shows how the engineering symbols map to the keyboard for a given set of LANG variable

values and X keysym values. For LANG variable values not listed, the En_US (U.S. English) mapping is

the default.

 Table 58. Available Keysyms for Completion of Engineering Symbol Sequence

LANG

En_US q w e r t y u i o a s d

En_GB q w e r t y u i o a s d

De_DE f w engr r t z u m o a s d

Fr_FR a z engr r t y u engr o q s d

It_IT q w engr r t y u i o a s d

En_JP q w e r t y u i o a s d

Sv_SE q w e r t y u i o a s d

ko_KR q w e r t y u i o a s d

Nl_BE

Fr_BE

a z e,engr r t y u i,engr o q s d

De_CH

Fr_CH

q w e,engr r t z u i o a s d

zh_TW

zh_CN

q w e r t y u i o a s d

Note: When an engineering symbol is engraved on the keyboard (indicated by engr), the engineering symbol measure follows the key sequence as

indicated on the key top, not necessarily the Alt keysym or Alt+Gr keysym sequence.

Chapter 3. Workstation Description Tables 109

The keysyms degree, mu, and plusminus exist in the X11 keysym definitions and can be considered to

correspond to the engineering symbols they best represent. Since you can map these keysyms to any

key position you want, the engineering symbols follow these keysym definitions to their mapped

position.

To map the keys on a keyboard to a specific language keyboard engraving, use the X utility, xmodmap.

Language key map files can be found in the directory

/usr/lpp/X11/defaults/xmodmap/<=LANG>=

The file, keyboard, corresponds to the RS/6000 default mapping. The file, keyboard.alt, if it exists,

corresponds to the 5080 default mapping.

v For character set 6 (Katakana) the engineering symbols defined by keysyms may not be remapped.

Also, if the keyboard is mapped to a language in which the engineering symbols correspond only to

engraved positions on a keyboard (such as degree for French keyboards), then the engineering

symbols are not available in a Katakana character set.

6090

v The qualifiers supported by your cursor controller or stylus depends on the hardware configuration of

your workstation.

v Fixed cursor type -1 (cross hair) extends to the limits of the screen.

v The cursor shape table has two predefined shapes that are defined as follows:

– Entry 1 contains a cursor shape of a pointing hand.

– Entry 2 contains a cursor shape of a pointing arrow.

v Input character sets 1-5 and 7 are supported through character set 8 (multi-language).

v For input Kanji, the primary character set must be set to Katakana through the customization panel.

5080

v The number of available triggers, the range of qualifiers of your cursor controller or stylus, and the

number of valuator logical, choice logical, button physical and scalar physical input devices supported

depend on the hardware configuration of your workstation. If you do not have the lighted program

function keys (LPFKs) installed, then trigger type 1 is not available.

v The number of available input character sets depend on the configuration of your workstation.

v Use the IBM 5080 Japanese Language Feature to assign input to either Kanji (character set identifier

128) or Katakana (character set identifier 6). Use the IBM 5080 Korean Language Feature to assign

input to Hangul (character set identifier 129).

v Traditional Chinese (character set identifier 130) is not supported.

v Simplified Chinese (character set identifier 132) is not supported.

GDDM

v The number of stroke logical, choice logical, string logical, and button physical input devices supported

depend on the hardware configuration of your workstation.

v 3=EVENT mode input from GDDM-supported workstations must be handled differently by the graPHIGS

API from EVENT mode input from asynchronous workstations.

A synchronous interface is used to obtain input from a workstation. GDDM issues a WAIT for input, and

no other processing can be done until the I/O has been received from the workstation. If an application

has several workstations open simultaneously, some of which are asynchronous and some of which are

GDDM-supported, then a call to Await Event (GPAWEV) only waits for event input from the

asynchronous workstations.

If only GDDM-supported workstations are open and have input devices in EVENT mode, then GDDM is

called to process the AWAIT I/O processing. In this case, the time-out value in the await event is ignored

110 The graPHIGS Programming Interface: Technical Reference

as GDDM waits until an I/O operation is completed. If several GDDM-supported workstations are open

with input devices in EVENT mode, event input is solicited from the workstations in the order that they

were opened by the application.

v The input device echo is not clipped to the echo area on GDDM workstations.

 Table 59. General Input Facilities - X Workstation Default Values

General Input Facilities Data Type POWER GT4

Family and

POWER GTO

DWA Adapters1 XSOFT

Adapters1

XLIB Adapters Inquiry

Number of available trigger types

for the break action

I 4* 4* 4* 4* GPQBK [ntrigs]

Available trigger types for the

break action

n[default]I 1, 2, 3, 4* 1, 2, 3, 4* 1, 2, 3, 4* 1, 2, 3, 4* GPQBK [ltrigs]

Default break trigger type I 4 4 4 4 GPQDBK

[trigger]

Default break trigger qualifier I 65539 65539 65539 65539 GPQDBK

[trigger]

Number of locator logical input

devices

I 1* 1* 1* 1* GPQLI [ndev]

Number of stroke logical input

devices

I 2 2 2 2 GPQLI [ndev]

Number of valuator logical input

devices

I 8* 8* 8* 8* GPQLI [ndev]

Number of choice logical input

devices

I 4* 4* 4* 4* GPQLI [ndev]

Number of pick logical input

devices

I 1 1 1 1 GPQLI [ndev]

Number of string logical input

devices

I 1* 1* 1* 1* GPQLI [ndev]

Number of button physical input

devices

I 4* 4* 4* 4*

Number of scalar physical input

devices

I 8* 8* 8* 8*

Number of vector physical input

devices

I 1 1 1 1

Logical input device interrupt type

(1=ASYNCHRONOUS, 2=SYNCHRONOUS)

E ASYNCHRONOUS ASYNCHRONOUS ASYNCHRONOUS ASYNCHRONOUS

Number of available input

character sets

I 8 11 11 11 GPQISF [ncsid]

Available input character sets E 6, 8, 9, 10, 128,

129, 130, 132

6, 8, 9, 10, 11,

12, 128, 129,

130, 132, 134

6, 8, 9, 10, 11,

12, 128, 129,

130, 132, 134

6, 8, 9, 10, 11,

12, 128, 129,

130, 132, 134

GPQISF [csid]

Maximum number of cursor shape

table entries

I 2 2 2 2 GPQCUF

[maxent]

Number of predefined cursor

shape table entries

I 2 2 2 2 GPQCUF [npred]

Number of available cursor

definition formats

I 1 1 1 1 GPQCUF

[totnum1]

Number of available fixed cursor

types

I 3 3 3 3 GPQCUF

[totnum2]

Available fixed cursor types

(-1=full screen cross-hair cursor,

-2=none, -3=two color cursor

logical input)

E -1, -2, -3 -1, -2, -3 -1, -2, -3 -1, -2, -3 GPQCUF

[lcursor]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

Chapter 3. Workstation Description Tables 111

Table 60. General Input Facilities Default Values

General Input

Facilities

Data Type 6090 5080 GDDM Inquiry

Number of available

trigger types for the

break action

I 4 4* 0 GPQBK [ntrigs]

Available trigger types

for the break action

n[default]I 1, 2, 3, 4 1, 2, 3, 4* N/A GPQBK [ltrigs]

Default break trigger

type

I 4 4 4 GPQDBK [trigger]

Default break trigger

qualifier

I 65539 65539 65539 GPQDBK [trigger]

Number of locator

logical input devices

I 1* 1* 1 GPQLI [ndev]

Number of stroke

logical input devices

I 2 2 2* GPQLI [ndev]

Number of valuator

logical input devices

I 8 8* 0 GPQLI [ndev]

Number of choice

logical input devices

I 4 4* 2* GPQLI [ndev]

Number of pick logical

input devices

I 1 1 1 GPQLI [ndev]

Number of string

logical input devices

I 1* 1* 1* GPQLI [ndev]

Number of button

physical input devices

I 4 4* 3*

Number of scalar

physical input devices

I 8 8* 0

Number of vector

physical input devices

I 1 1 1

Logical input device

interrupt type

(ASYNCHRONOUS,

SYNCHRONOUS)

E ASYNCH- RONOUS ASYNCH- RONOUS SYNCH- RONOUS

Number of available

input character sets

I 8 9* 1 GPQISF [ncsid]

Available input

character sets

E 1-7, 128 1-7, 128, 129* 1 GPQISF [csid]

Maximum number of

cursor shape table

entries

I 2 0 0 GPQCUF [maxent]

Number of predefined

cursor shape table

entries

I 2 0 0 GPQCUF [npred]

Number of available

cursor definition

formats

I 1 0 0 GPQCUF [totnum1]

Number of available

fixed cursor types

I 1 0 0 GPQCUF [totnum2]

Available fixed cursor

types (-1=full screen

cross-hair cursor,

-2=none, -3=two color

cursor logical input)

E -1 N/A N/A GPQCUF [lcursor]

Note: See the text prior to this table for more information.

 Table 61. Available Cursor Definition Formats for X

format parm1 parm2

Fixed size bit array 64 64

112 The graPHIGS Programming Interface: Technical Reference

Table 62. Available Cursor Definition Formats for the 6090

format parm1 parm2

Fixed size bit array 64 64

Available Triggers

 Table 63. Available Triggers for X

Trigger Type Description Qualifiers Description

-2 Trigger when

primary fires

0 The secondary trigger fires when the primary fires

-1 Change in

measure

Trigger threshold1 Change in the physical device’s measure

1 Lighted program

function keyboard

1-32* The 32 LPF keys

2 Cursor controller

or stylus

1-8* 1) Cursor controller button #1

 is released or stylus tip switch is released

2) Cursor controller button #2

 is released

3) Cursor controller button #3

 is released

4) Cursor controller button #4

 is released

5) Cursor controller button #1

 is pressed down or stylus tip switch down

6) Cursor controller button #2

 is pressed down

7) Cursor controller button #3

 is pressed down

8) Cursor controller button #4

 is pressed down

3 PF keys on

keyboard

1 to n2 The PF keys on the keyboard

4 Alphanumeric

keyboard

See Choice

Devices (choice

device #4)

See Choice Devices

Note:

1 A low qualifier specifies that the threshold must be crossed before the device is fired.

2 n can be >=32 depending on the X server and the keyboard being used with your workstation.

* See General Input Facilities for more information.

 Table 64. Available Triggers for the 6090

Trigger Type Description Qualifiers Description

-1 Change in

measure

0 Change in the physical device’s measure

1 Lighted program

function keyboard

1-32 The 32 LPF keys

Chapter 3. Workstation Description Tables 113

Table 64. Available Triggers for the 6090 (continued)

Trigger Type Description Qualifiers Description

2 Cursor controller

or stylus

1-8* 1) Cursor controller button #1

 is released or stylus tip switch is released

2) Cursor controller button #2

 is released

3) Cursor controller button #3

 is released

4) Cursor controller button #4

 is released

5) Cursor controller button #1

 is pressed down or stylus tip switch down

6) Cursor controller button #2

 is pressed down

7) Cursor controller button #3

 is pressed down

8) Cursor controller button #4

 is pressed down

3 PF keys on

keyboard

1-32 The PF keys on the keyboard

4 Alphanumeric

keyboard

See Choice

Devices (choice

device #4)

See Choice Devices

Note: See the text prior to this table for more information.

 Table 65. Available Triggers for the 5080

Trigger Type Description Qualifiers Description

1 Lighted program

function keyboard

1-32* The 32 LPF keys

2 Cursor controller

or stylus

1-8* 1) Cursor controller button #1

 is released or stylus tip switch is released

2) Cursor controller button #2

 is released

3) Cursor controller button #3

 is released

4) Cursor controller button #4

 is released

5) Cursor controller button #1

 is pressed down or stylus tip switch down

6) Cursor controller button #2

 is pressed down

7) Cursor controller button #3

 is pressed down

8) Cursor controller button #4

 is pressed down

3 PF keys on

keyboard

1 to n1 The PF keys on the keyboard

4 Alphanumeric

keyboard

See Choice

Devices (choice

device #4)

See Choice Devices n can be <=41 depending on the

114 The graPHIGS Programming Interface: Technical Reference

Table 65. Available Triggers for the 5080 (continued)

Trigger Type Description Qualifiers Description

Note:

1 Keyboard being used with your workstation.

* See General Input Facilities for more information.

 Table 66. Available Triggers for GDDM

Trigger Type Description Qualifiers Description

1 PF keys 1 - 24 The PF keys

2 Mouse (and tablet) 1 - 3* The mouse buttons

41 Keyboard 65537, 65539 The Enter key, the Cancel key

Note:

1 The button device 4 is used as a trigger but cannot be used as a separate choice device.

* See the text prior to this table for more information.

Locator Devices

Only one locator device is provided by default. For those workstations that support up to two locator

devices, use the Locator Devices (LOCDEVS) procopt to modify the number of locators. See LOCDEVS

(Locator Devices).

Locator devices do not have secondary triggers. For most workstations, the primary trigger defaults to the

release of the buttons on the puck.

The default echo area supported depends on the maximum display surface of your workstation. The

maximum display surface changes with various display hardware. Use the Inquire Default Locator Device

Data (GPQDLC) subroutine to obtain the default echo area of your workstation.

X and XSOFT

General Information Applying to All Adapters

v Attributes specified in the data record are ignored for locator input echo attributes (GPINLC).

v Locator Echo Type 7 (structure drag) ignores color and interior attributes specified in the structure

network.

v The default high qualifier and available trigger types depend on the hardware configuration of your

workstation. If you do not have lighted program function keys (LPFKs) installed, then trigger type 1 is

not available.

6090

v The color attribute is ignored for locator input echo attributes (GPINLC).

5080

v All attributes are ignored for locator input echo attributes (GPINLC).

v The default high qualifier and available trigger types depend on the hardware configuration of your

workstation. If you do not have lighted program function keys (LPFKs) installed, then trigger type 1 is

not available.

Chapter 3. Workstation Description Tables 115

v Locator Echo Type 7 (structure drag) drags pixel primitives by setting all of the pixels to the echo color.

GDDM

v If a mouse or tablet is configured (they are mutually exclusive), this is the locator device. If no mouse or

tablet is configured, the cursor keys are used. The locator device trigger is not programmable. The

Enter key and the PF keys act as the triggers.

v The locator echo area may not be changed and defaults to full screen.

v All attributes are ignored for location input echo attributes (GPINLC).

The following table provides the default triggers for locator devices, which include releasing any of the four

cursor controller buttons or releasing the stylus tip switch.

 Table 67. Locator Logical Devices - X Default Values

Locator Logical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Locator device number I 1, 2* 1, 2* 1, 2* 1, 2* GPQLI [dev]

Maximum number of locator devices I 2 2 2 2

Number of prompt/echo types I 6 6 6 6 GPQDLC

[necho]

Available prompt/echo types (1-5, 7) E 1-5, 7 1-5, 7 1-5, 7 1-5, 7 GPQDLC

[echo]

Default echo area 6[default]R 0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.240,

0.0-0.170,

0.0-0.240*

GPQDLC

[area]

Available supported input character sets

(1=PRIMARY, 2=ALL)

E PRIMARY PRIMARY PRIMARY PRIMARY GPQPCS [csid]

Physical input device type for the measure

(1=BUTTON, 2=SCALAR, 3=2D_VECTOR)

E 2D_VECTOR 2D_VECTOR 2D_VECTOR 2D_VECTOR GPQSPD

[category]

Physical input device number for the measure I 1 (tablet or

mouse)

1 (tablet or

mouse)

1 (tablet or

mouse)

1 (tablet or

mouse)

GPQSPD

GPQSPD

[pdevice]

Default view index I 0 0 0 0

Default initial locator position 3[default]R 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0 GPQDLC [pos]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 68. Locator Logical Devices Default Values

Locator Logical

Devices

Data Type 6090 5080 GDDM Inquiry

Locator device

number

I 1, 2* 1, 2* 1 GPQLI [dev]

Maximum number

of locator devices

I 2 2 1

Number of

prompt/echo

types

I 6 6 5 GPQDLC [necho]

Available

prompt/echo

types (1-5, 7)

E 1-5, 7 1-5, 7 1-5* GPQDLC [echo]

Default echo area 6[default]R 0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.28448,

0.0-0.28448,

0.0-0.28448*

0.0-0.24682,

0.0-0.17574,

0.0-0.24682*

GPQDLC [area]

116 The graPHIGS Programming Interface: Technical Reference

Table 68. Locator Logical Devices Default Values (continued)

Locator Logical

Devices

Data Type 6090 5080 GDDM Inquiry

Available

supported input

character sets

(1=PRIMARY,

2=ALL)

E PRIMARY PRIMARY PRIMARY GPQPCS [csid]

Physical input

device type for

the measure

(1=BUTTON,

2=SCALAR,

3=2D_VECTOR)

E 2D_VECTOR 2D_VECTOR 2D_VECTOR GPQSPD

[category]

Physical input

device number for

the measure

I 1 (tablet) 1 (tablet) 1 (tablet,

keyboard, or

mouse)

GPQSPD

GPQSPD

[pdevice]

Default view index I 0 0 0

Default initial

locator position

3[default]R 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0 GPQDLC [pos]

Note: See the text prior to this table for more information.

 Table 69. Locator Trigger Types

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

X:

Locator 1 0 2 1 4* -1, 1, 2, 3, 4*

Locator 2 0 2 1 4* -1, 1, 2, 3, 4*

6090:

Locator 1 0 2 1 4 -1, 1, 2, 3, 4*

Locator 2 0 2 1 4 -1, 1, 2, 3, 4*

5080:

Locator 1 0 2 1 4* 1, 2, 3, 4*

Locator 2 0 2 1 4* 1, 2, 3, 4*

GDDM:

Locator 1 0 2 1 3 None

0 1 1 24 None

0 4 65537 65537 None

Note: The values identified with the * reflect the default value, but not necessarily the actual value. It depends on the

hardware configuration of the workstation.

Stroke Devices

There are two types of stroke devices:

v Stroke device #1 is the streaming stroke device and has two secondary triggers.

– Secondary trigger #2 initiates the accumulation of stroke points into the stroke buffer.

– Secondary trigger #1 ends the accumulation of points into the stroke buffer.

Chapter 3. Workstation Description Tables 117

By default, the primary trigger corresponds to the same event as the secondary trigger #1. Therefore,

upon the release of a cursor control button, accumulation of input stops and input is fired to the

application.

v Stroke device #2 is a discrete stroke device and has four secondary triggers that act upon the point at

the edit position.

The edit position can be from 0 to n+1 where 0 refers to the position before the first stroke point and

n+1 refers to the position after the last stroke point. The four secondary triggers act as follows:

– Secondary trigger #4 deletes the point at the edit position and moves the edit position backward one

point (that is, toward the first point in the list).

If the list is not empty and the edit position is neither before the first point nor after the last point, this

trigger deletes the point at the edit position. If the edit position is not before the first point, this trigger

moves it back one.

v Secondary trigger #3 inserts the point identified by the current cursor location into the list after the edit

position and moves the edit position forward one point (that is, toward the last point in the list).

If there are fewer points in the list than the application will accept, it inserts the new point into the list.

Otherwise, this trigger sounds the alarm and does not change either the buffer or the edit position.

If the edit position is not beyond the end of the list, this trigger moves all points above the current point

up one, opening the slot above the current point. It inserts the new point in that slot and advances the

edit position to the new point.

If the edit position is beyond the end of the list, this trigger appends the new point to the list and leaves

the edit position unchanged (that is, pointing at the new point).

v Secondary trigger #2 moves the edit position forward one point (that is, toward the last point in the list).

If the list is not empty and the edit position is not after the last point, this trigger moves the edit position.

v Secondary trigger #1 moves the edit position backward one point (that is, toward the first point in the

list).

If the list is not empty and the edit position is not before the first point, this trigger moves the edit

position.

When the echo method uses polylines or polymarkers and the edit position is within the range 1-n, the

current point is indicated with a diamond around the point.

When the echo method uses polylines and the edit position is 0 or n+1, a rubberband line is displayed

from the first or last stroke point to the current cursor position.

The time interval parameter in the Initialize Stroke (GPINSK) data record is ignored.

The default echo area supported depends on the maximum display surface of your workstation. The

maximum display surface changes with various display hardware. Use the Inquire Default Stroke Device

Data (GPQDSK) subroutine to obtain the default echo area of your workstation.

The default high qualifier and available trigger types depend on the hardware configuration of your

workstation. If you do not have lighted program function keys (LPFKs) installed, then trigger type 1 is not

available. It also depends on the number of mouse buttons provided.

X and XSOFT

General Information Applying to All Adapters

The color attribute is ignored for stroke input echo attributes (GPINSK).

6090, 5080

The color attribute is ignored for stroke input echo attributes (GPINSK).

118 The graPHIGS Programming Interface: Technical Reference

GDDM

v Stroke device #1 is only available if a mouse or tablet is configured. When a mouse or tablet button is

pressed, the stroke device is activated and points are sampled at fixed intervals. Pressing a mouse or

puck button or stylus switch a second time deactivates the device and suspends stream sampling. You

can only trigger this device when it is not accumulating points.

The data record, the editing position, and the echo area are not evaluated. Only the first point of the

initial stroke is displayed.

v Stroke device #2 is only available if a mouse or tablet is configured. One stroke point is sampled each

time a mouse or puck button or stylus switch is pressed.

The data record, the editing position, and the echo area are not evaluated. Only the first point of the

initial stroke is displayed.

 Table 70. Stroke Logical Devices - X Default Values (Stroke 1 and 2)

Stroke Logical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Stroke device number I 1, 2 1, 2 1, 2 1, 2 GPQLI [dev]

Number of prompt/echo types I 3 3 3 3 GPQDSK

[necho]

Available prompt/echo types (1, 3, 4) E 1, 3, 4 1, 3, 4 1, 3, 4 1, 3, 4 GPQDSK

[echo]

Default echo area 6[default]R 0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.240,

0.0-0.170,

0.0-0.240*

GPQDSK

[area]

Available supported input character sets

(PRIMARY, ALL)

E PRIMARY PRIMARY PRIMARY PRIMARY GPQPCS [csid]

Physical input device type for the measure

(1=BUTTON, 2=SCALAR, 3=2D_VECTOR)

E 2D_VECTOR 2D_VECTOR 2D_VECTOR 2D_VECTOR GPQSPD

[category]

Physical input device number for the measure I 1 (tablet or

mouse)

1 (tablet or

mouse)

1 (tablet or

mouse)

1 (tablet or

mouse)

GPQSPD

[pdevice]

Maximum input buffer size (in points) I 337 337 337 337 GPQSK

[buflen]

Default initial stroke input buffer size (in

points)

I 337 337 337 337 GPQDSK

[buflen]

Default view index I 0 0 0 0

Initial number of points I 0 0 0 0 GPQSK

[npoint]

Editing position I 1 1 1 1 GPQSK

[editpos]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 71. Stroke Logical Devices (Stroke 1 and 2) Default Values

Stroke Logical

Devices

Data Type 6090 5080 GDDM Inquiry

Stroke device number I 1, 2 1, 2 1, 2 GPQLI [dev]

Number of

prompt/echo types

I 3 3 2, 3 GPQDSK [necho]

Available prompt/echo

types (1, 3, 4)

E 1, 3, 4 1, 3, 4 Stroke 1:

1, 3, 4

GPQDSK [echo]

Default echo area 6[default]R 0.0-0.425, 0.0-0.340,

0.0-0.425*

0.0-0.28448,

0.0-0.28448,

0.0-0.28448*

0.0-0.24682,

0.0-0.17574,

0.0-0.24682*

GPQDSK [area]

Available supported

input character sets

(PRIMARY, ALL)

E PRIMARY PRIMARY PRIMARY GPQPCS [csid]

Chapter 3. Workstation Description Tables 119

Table 71. Stroke Logical Devices (Stroke 1 and 2) Default Values (continued)

Stroke Logical

Devices

Data Type 6090 5080 GDDM Inquiry

Physical input device

type for the measure

(1=BUTTON, 2=SCALAR,

3=2D_VECTOR)

E 2D_VECTOR 2D_VECTOR 2D_VECTOR GPQSPD [category]

Physical input device

number for the

measure

I 1 (tablet) 1 (tablet) 1 (tablet or mouse) GPQSPD [pdevice]

Maximum input buffer

size (in points)

I 337 337 64 GPQSK [buflen]

Default initial stroke

input buffer size (in

points)

I 337 337 64 GPQDSK [buflen]

Default view index I 0 0 0

Initial number of points I 0 0 0 GPQSK [npoint]

Editing position I 1 1 1 GPQSK [editpos]

Note: See the text prior to this table for more information.

 Table 72. Stroke Trigger Types

Device Number Trigger Level Default Trigger Type Default Low Qualifier Default High Qualifier Available Trigger

Types

Stroke 1 0 2 1 4* 1, 2, 3, 4*

11 2 1 4* 1, 2, 3, 4*

21 2 5 8* 1, 2, 3, 4*

Stroke 2 0 4 65537 65537 1, 2, 3, 4*

11 none none none 1, 2, 3, 4*

21 2 1 4* 1, 2, 3, 4*

31 2 1 4* 1, 2, 3, 4*

41 2 1 4* 1, 2, 3, 4*

Note:

1 There are no available trigger types for GDDM.

* See the text prior to this table for more information.

Valuator Devices

Valuator devices do not have secondary triggers.

By default, the trigger type is workstation-dependent. When the device is in REQUEST mode, it is triggered

by the Enter key on the keyboard. When it is in EVENT mode, it is triggered by any movement of the dial

that results in a change to the measure.

The default echo area supported depends on the maximum display surface of your workstation. The

maximum display surface changes with various display hardware. Use the Inquire Default Valuator Device

Data (GPQDDV) subroutine to obtain the default echo area of your workstation.

The available trigger types depend on the hardware configuration of your workstation. If you do not have

lighted program function keys (LPFKs) installed, then trigger type 1 is not available.

120 The graPHIGS Programming Interface: Technical Reference

X AND XSOFT

General Information Applying to All Adapters

You can set the primary trigger type to one that is fired whenever the measure of the device changes by

an amount greater than an application-specified delta. This is known as trigger by change in measure and

is most useful when the device is in EVENT mode.

You can also set the primary trigger type to any one of the button device types, using any of the

alternatives or any combination of the alternatives on the selected device. This trigger type is most useful

when the device is in REQUEST mode.

Use GPIT to change the defaults, but once you’ve changed the trigger type from the default, you cannot

change it back to the workstation-dependent type, since this type is not selectable through programming.

The application can use XChangeDeviceControl (a function in the Enhanced X-Windows Input Extension

Library) to set the granularity of the valuators before opening the workstation. This value can be used to

set the dial granularity to a user-defined value.

6090, 5080

The valuator device number depends on the hardware configuration of your workstation. Use the Inquire

List of Logical Input Devices (GPQLI) subroutine to obtain the valuator device number defaults supported

by your workstation.

 Table 73. Valuator Logical Devices (Values 1-8) - X Default Values

Valuator Logical

Devices

Data Type POWER GT4

Family and

POWER GTO

DWA Adapters1 XSOFT Adapters1 XLIB Adapters Inquiry

Valuator device

number

E 1-8* 1-8* 1-8* 1-8* GPQLI [dev]

Number of

prompt/echo types

I 3 3 3 3 GPQDVL [necho]

Available

prompt/echo types

(1, 3, 4)

E 1, 3, 4 1, 3, 4 1, 3, 4 1, 3, 4 GPQDVL [echo]

Default echo area 6[default]R 1) 0.0-0.425,

0.3267-0.340,

0.0-0.425*

2) 0.0-0.425,

0.3134-0.340,

0.0-0.425*

3) 0.0-0.425,

0.3001-0.340,

0.0-0.425*

4) 0.0-0.425,

0.2868-0.340,

0.0-0.425*

5) 0.0-0.425,

0.2735-0.340,

0.0-0.425*

6) 0.0-0.425,

0.2602-0.340,

0.0-0.425*

7) 0.0-0.425,

0.2469-0.340,

0.0-0.425*

8) 0.0-0.425,

0.2336-0.340,

0.0-0.425*

1) 0.0-0.425,

0.3267-0.340,

0.0-0.425*

2) 0.0-0.425,

0.3134-0.340,

0.0-0.425*

3) 0.0-0.425,

0.3001-0.340,

0.0-0.425*

4) 0.0-0.425,

0.2868-0.340,

0.0-0.425*

5) 0.0-0.425,

0.2735-0.340,

0.0-0.425*

6) 0.0-0.425,

0.2602-0.340,

0.0-0.425*

7) 0.0-0.425,

0.2469-0.340,

0.0-0.425*

8) 0.0-0.425,

0.2336-0.340,

0.0-0.425*

1) 0.0-0.425,

0.3267-0.340,

0.0-0.425*

2) 0.0-0.425,

0.3134-0.340,

0.0-0.425*

3) 0.0-0.425,

0.3001-0.340,

0.0-0.425*

4) 0.0-0.425,

0.2868-0.340,

0.0-0.425*

5) 0.0-0.425,

0.2735-0.340,

0.0-0.425*

6) 0.0-0.425,

0.2602-0.340,

0.0-0.425*

7) 0.0-0.425,

0.2469-0.340,

0.0-0.425*

8) 0.0-0.425,

0.2336-0.340,

0.0-0.425*

1) 0.0-0.28448,

0.27448-0.28448,

0.0-0.28448*

2) 0.0-0.28448,

0.26448-0.28448,

0.0-0.28448*

3) 0.0-0.28448,

0.25448-0.28448,

0.0-0.28448*

4) 0.0-0.28448,

0.24448-0.28448,

0.0-0.28448*

5) 0.0-0.28448,

0.23448-0.28448,

0.0-0.28448*

6) 0.0-0.28448,

0.22448-0.28448,

0.0-0.28448*

7) 0.0-0.28448,

0.21448-0.28448,

0.0-0.28448*

8) 0.0-0.28448,

0.20448-0.28448,

0.0-0.28448*

GPQDVL [area]

Physical input

device type for the

measure

(1=BUTTON,

2=SCALAR,

3=2D_VECTOR)

E SCALAR SCALAR SCALAR SCALAR GPQSPD

[category]

Chapter 3. Workstation Description Tables 121

Table 73. Valuator Logical Devices (Values 1-8) - X Default Values (continued)

Valuator Logical

Devices

Data Type POWER GT4

Family and

POWER GTO

DWA Adapters1 XSOFT Adapters1 XLIB Adapters Inquiry

Physical input

device number for

the measure

I 1) 1 (dial 1)

2) 2 (dial 2)

3) 3 (dial 3)

4) 4 (dial 4)

5) 5 (dial 5)

6) 6 (dial 6)

7) 7 (dial 7)

8) 8 (dial 8)

1) 1 (dial 1)

2) 2 (dial 2)

3) 3 (dial 3)

4) 4 (dial 4)

5) 5 (dial 5)

6) 6 (dial 6)

7) 7 (dial 7)

8) 8 (dial 8)

1) 1 (dial 1)

2) 2 (dial 2)

3) 3 (dial 3)

4) 4 (dial 4)

5) 5 (dial 5)

6) 6 (dial 6)

7) 7 (dial 7)

8) 8 (dial 8)

1) 1 (dial 1)

2) 2 (dial 2)

3) 3 (dial 3)

4) 4 (dial 4)

5) 5 (dial 5)

6) 6 (dial 6)

7) 7 (dial 7)

8) 8 (dial 8)

GPQSPD [pdevice]

Default initial value R 0.0 0.0 0.0 0.0 GPQDVL [ivalue]

Default low value R 0.0 0.0 0.0 0.0 GPQDVL [lovalue]

Default high value R 1.0 1.0 1.0 1.0 GPQDVL [hivalue]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 74. Valuator Logical Devices (Values 1-8) Default Values

Valuator Logical

Devices

Data Type 6090 5080 Inquiry

Valuator device

number

E 1-8* 1-8* GPQLI [dev]

Number of

prompt/echo types

I 3 3 GPQDVL [necho]

Available prompt/echo

types (1, 3, 4)

E 1, 3, 4 1, 3, 4 GPQDVL [echo]

122 The graPHIGS Programming Interface: Technical Reference

Table 74. Valuator Logical Devices (Values 1-8) Default Values (continued)

Valuator Logical

Devices

Data Type 6090 5080 Inquiry

Default echo area 6[default]R 1) 0.0-0.425,

0.3267-0.340,

0.0-0.425*

2) 0.0-0.425,

0.3134-0.340,

0.0-0.425*

3) 0.0-0.425,

0.3001-0.340,

0.0-0.425*

4) 0.0-0.425,

0.2868-0.340,

0.0-0.425*

5) 0.0-0.425,

0.2735-0.340,

0.0-0.425*

6) 0.0-0.425,

0.2602-0.340,

0.0-0.425*

7) 0.0-0.425,

0.2469-0.340,

0.0-0.425*

8) 0.0-0.425,

0.2336-0.340,

0.0-0.425*

1) 0.0-0.28448,

0.27448-0.28448,

0.0-0.28448*

2) 0.0-0.28448,

0.26448-0.28448,

0.0-0.28448*

3) 0.0-0.28448,

0.25448-0.28448,

0.0-0.28448*

4) 0.0-0.28448,

0.24448-0.28448,

0.0-0.28448*

5) 0.0-0.28448,

0.23448-0.28448,

0.0-0.28448*

6) 0.0-0.28448,

0.22448-0.28448,

0.0-0.28448*

7) 0.0-0.28448,

0.21448-0.28448,

0.0-0.28448*

8) 0.0-0.28448,

0.20448-0.28448,

0.0-0.28448*

GPQDVL [area]

Physical input device

type for the measure

(1=BUTTON, 2=SCALAR,

3=2D_VECTOR)

E SCALAR SCALAR GPQSPD [category]

Physical input device

number for the

measure

I 1) 1 (dial 1)

2) 2 (dial 2)

3) 3 (dial 3)

4) 4 (dial 4)

5) 5 (dial 5)

6) 6 (dial 6)

7) 7 (dial 7)

8) 8 (dial 8)

1) 1 (dial 1)

2) 2 (dial 2)

3) 3 (dial 3)

4) 4 (dial 4)

5) 5 (dial 5)

6) 6 (dial 6)

7) 7 (dial 7)

8) 8 (dial 8)

GPQSPD [pdevice]

Default initial value R 0.0 0.0 GPQDVL [ivalue]

Default low value R 0.0 0.0 GPQDVL [lovalue]

Default high value R 1.0 1.0 GPQDVL [hivalue]

Note: See the text prior to this table for more information.

 Table 75. Valuator Triggers

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

For X

Valuator 1-8 0 0 0 0 -1, 1, 2, 3, 4*

For the 6090

Valuator 1-8 0 0 0 0 -1, 1, 2, 3, 4*

For the 5080

Chapter 3. Workstation Description Tables 123

Table 75. Valuator Triggers (continued)

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

Valuator 1-8 0 0 0 0 None

Note: See the text prior to this table for more information.

Choice Devices

All choice devices possess only primary triggers. In general, the default corresponds to all choice

alternatives on the given choice device. The alternatives for choice device triggers are limited to the

alternatives on the given choice device; therefore, a device cannot be fired by input actions on other input

devices. Choice alternatives are deactivated by setting the choice device triggers to the subset of choice

alternatives that you would like to activate. Echo is not supported on choice devices.

A choice device in sample mode always returns ″no choice.″

The four choice devices are:

v Choice device #1 is typically the lighted program function keys.

v Choice device #2 corresponds to the buttons on a pointing device. There are multiple pointing devices,

such as:

– Cursor controller, which has eight trigger alternatives.

The default triggers for the four-button cursor controller are alternatives 1 through 4, which

correspond to the release of a cursor button. By default, alternatives 5 through 8 are disabled. These

alternatives correspond to the depression of buttons 1 through 4, respectively.

– Stylus, which has two trigger alternatives.

The default trigger for the stylus is alternative 1, which corresponds to the release of the tip switch.

By default, alternative 5 is disabled. This alternative corresponds to the depression of the tip switch.

– Mouse buttons; there are two trigger alternatives, button pressed and button released, for each

button on the mouse.

v Choice device #3 is the function keys on the keyboard. The number of alternatives is dependent on the

number of function keys on your keyboard.

v Choice device #4 corresponds to the data and control keys on the keyboard.

For the data keys, this choice device returns a choice’s value which corresponds to the character of the

key pressed. The values returned are dependent on the keyboard that is attached to your workstation

and to the input device’s primary character set. Some workstations may support several language

keyboards which have different keys and corresponding code points. For the available keys, the tables

found in Character Sets and Fonts Provided by the API illustrate the corresponding code points for each

available language. (Use Font 1 of the primary character set to determine the available choice

alternatives.) The returned choice values for the data keys are EBCDIC code points for the

GDDM/graPHIGS API Programming Interface and ASCII code points for the Personal graPHIGS API.

For the control keys (for which no character code point exists), the following lists the supported keys

and their corresponding choice values:

 Table 76. Supporting keys and choice values

Key Choice Value

Enter X’10001’ = 65537

New line X’10002’ = 65538

Cancel X’10003’ = 65539

Up arrow X’10004’ = 65540

124 The graPHIGS Programming Interface: Technical Reference

Table 76. Supporting keys and choice values (continued)

Key Choice Value

Down arrow X’10005’ = 65541

Left arrow X’10006’ = 65542

Right arrow X’10007’ = 65543

Tab forward X’10008’ = 65544

Tab back X’10009’ = 65545

Insert X’1000A’ = 65546

Delete X’1000B’ = 65547

Backspace X’1000C’ = 65548

Up arrow + Shift X’1000D’ = 65549

Down arrow + Shift X’1000E’ = 65550

Left arrow + Shift X’1000F’ = 65551

Right arrow + Shift X’10010’ = 65552

Up arrow + Alt X’10011’ = 65553

Down arrow + Alt X’10012’ = 65554

Left arrow + Alt X’10013’ = 65555

Right arrow + Alt X’10014’ = 65556

Home X’10015’ = 65557

Home + Shift X’10016’ = 65558

Home + Alt X’10017’ = 65559

PA1 X’10018’ = 65560

EOF X’10019’ = 65561

EOF + Shift X’1001A’ = 65562

EOF + Alt X’1001B’ = 65563

PA2 X’1001C’ = 65564

CLEAR X’1001D’ = 65565

+ on numeric pad + Alt X’1001E’ = 65566

- on numeric pad + Alt X’1001F’ = 65567

The choice device number depends on the hardware configuration of your workstation. Use the Inquire List

of Logical Input Devices (GPQLI) subroutine to obtain the choice device number defaults supported by

your workstation.

The default echo area supported depends on the maximum display surface of your workstation. The

maximum display surface changes with various display hardware. Use the Inquire Default Choice Device

Data (GPQDCH) subroutine to obtain the default echo area of your workstation.

The default high qualifier depends on the hardware configuration of your workstation.

Chapter 3. Workstation Description Tables 125

X and XSOFT

General Information Applying to All Adapters

Choice device #3 has the following values:

 1-255 The keyboard program function keys F1 to Fx (where x is

the highest PF key on your keyboard).

256-511 The keyboard program function keys F1 to Fx plus the

SHIFT key (where x is the highest PF key on your

keyboard).

Only 24 choice device #3 triggers are supported with an IBM keyboard. 12 of which are the unshifted PF

keys, and the other 12 are the shifted PF keys.

To support additional choice device #3 triggers, the current keyboard may be remapped using the X utility,

xmodmap.

You must edit the file /usr/lpp/X11/defaults/xmodmap/$LANG/keyboard with superuser authority, where

$LANG is the result you obtain when entering the echo $LANG command.

Each entry is listed as a keycode, base identifier, shift modifier, and alternate graphics modifier. You may

wish to change the states of the base identifier and shift modifier to return a new pfkey measure. If a base

identifier already returns a pfkey measure, you may wish to change the state of the shift modifier to return

an additional pfkey measure.

As an example, with a current entry in the table that appears as follows:

 keycode 120 = F1 NoSymbol NoSymbol

you may change the shift identifier (the second column) to be F16. The new edited entry then appears as

follows:

 keycode 120 = F1 F16 NoSymbol

You may wish to change the print key measures. Currently, the print key returns Print when it is pressed.

If you wish to change the print key to return Function 13 when the print key is pressed and Function 28

when the shift and the print key are pressed, you would change the entry:

 keycode 132 = Print NoSymbol NoSymbol

to

 keycode 132 = F13 F28 NoSymbol

When you have finished editing the keyboard file, type the command xmodmap keyboard to have the

changes take effect as the current keyboard mapping.

Some keys that you may wish to remap may be first used by the window manager, so, the measure is not

given to your application. An example of this is the SHIFT-ESCAPE key while running the Motif window

manager. Such keys under the Motif window manager may be changed in the key binding description file.

This file name appears as /usr/lib/X11/system.mwmrc on your system. In the DefaultKeyBindings

structure, you may comment any lines which describe a key that you wish the window manager not to

control. For example, if an entry in the file appears as follows:

 Shift<Key>Escape icon|window f.post_wmenu

you may comment this line to obtain the measure for the SHIFT-ESCAPE key through the graPHIGS API.

Then the Motif window manager allows the SHIFT-ESCAPE key to pass through to your application for your

use.

126 The graPHIGS Programming Interface: Technical Reference

The number of mouse buttons supported for choice device #2 may differ from the number of physical

mouse buttons because many X servers map the mouse’s physical mouse buttons into a larger number of

logical mouse buttons. For example, the PS/2 mouse has two buttons, but the X server recognizes the

mouse as having three buttons: left, middle (both left and right depressed), and right. Since the graPHIGS

API uses the X server’s physical-to-logical mapping of the buttons, the number of logical buttons will be

consistent between graPHIGS API and X applications.

6090

Choice device #3 has the following values:

 1-16 The keyboard program function keys F0 to F15

17-32 The keyboard program function keys F0 to F15 plus the SHIFT key

33-41 The keyboard program function keys F0 to F8 plus the ALT key

5080

Choice device #3 has either 24 or 41 alternatives, depending on the type of keyboard present on the

5080. When a 5085 Model 1 keyboard is used, 24 choice alternatives are present. Otherwise, 41 choice

alternatives are present. These choice values correspond to the following:

 1-16 The keyboard program function keys F0 to F15

17-32 The keyboard program function keys F0 to F15 plus the SHIFT key

33-41 The keyboard program function keys F0 to F8 plus the ALT key

The following list itemizes differences that exist between the geometric text code pages found in Character

Sets and Fonts Provided by the API and the available choice alternatives for the French and Italian

language features:

v French (CSID 4) on the 5080 Models 1, 1A

– X’42’, X’52’, X’56’, X’57’, X’63’, X’CA’, X’CB’, X’DB’, X’EA’, X’FA’ are not available as choice

alternatives.

v French (CSID 4) on the 5080 Model 2

– X’CA’ is not available as a choice alternative.

v Italian (CSID 5)

– X’DB’ is not available as a choice alternative.

 Table 77. Choice Logical Devices (Values 1-4) - X Workstation Default Values

Choice Logical Devices Data Type POWER GT4

Family and

POWER GTO

DWA Adapters1 XSOFT

Adapters1

XLIB Adapters Inquiry

Choice device number I 1) LPFKs

2) mouse or

tablet

3) PF keys

4) keyboard*

1) LPFKs

2) mouse or

tablet

3) PF keys

4) keyboard*

1) LPFKs

2) mouse or

tablet

3) PF keys

4) keyboard*

1) LPFKs

2) mouse or

tablet

3) PF keys

4) keyboard*

GPQLI [dev]

Number of prompt/echo types I 1) 2

2) 1

3) 1

4) 1

1) 2

2) 1

3) 1

4) 1

1) 2

2) 1

3) 1

4) 1

1) 2

2) 1

3) 1

4) 1

GPQDCH

[necho]

Available prompt/echo types (1, 2) E 1) 1, 2

2) 1

3) 1

4) 1

1) 1, 2

2) 1

3) 1

4) 1

1) 1, 2

2) 1

3) 1

4) 1

1) 1, 2

2) 1

3) 1

4) 1

GPQDCH [echo]

Chapter 3. Workstation Description Tables 127

Table 77. Choice Logical Devices (Values 1-4) - X Workstation Default Values (continued)

Choice Logical Devices Data Type POWER GT4

Family and

POWER GTO

DWA Adapters1 XSOFT

Adapters1

XLIB Adapters Inquiry

Default echo area 6[default]R 0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.240,

0.0-0.170,

0.0-0.240*

GPQDCH [area]

Available supported input character

sets (PRIMARY, ALL)

E PRIMARY PRIMARY PRIMARY PRIMARY GPQPCS [csid]

Physical input device type for the

measure (1=BUTTON, 2=SCALAR,

3=2D_VECTOR)

E BUTTON BUTTON BUTTON BUTTON GPQSPD

[category]

Physical input device number for the

measure

I 1=LPFKs

2=mouse

buttons

3=PF keys

4=keyboard

1=LPFKs

2=mouse buttons

3=PF keys

4=keyboard

1=LPFKs

2=mouse buttons

3=PF keys

4=keyboard

1=LPFKs

2=mouse buttons

3=PF keys

4=keyboard

GPQSPD

[pdevice]

Maximum choice alternatives I 1) 32

2) 8

3) 1 to n

2

4) 210

1) 32

2) 8

3) 1 to n

2

4) 210

1) 32

2) 8

3) 1 to n

2

4) 210

1) 32

2) 8

3) 1 to n

2

4) 210

GPQDCH

[choice]

Default choice alternative I 1) 0

2) 0

3) 0

4) 0

1) 0

2) 0

3) 0

4) 0

1) 0

2) 0

3) 0

4) 0

1) 0

2) 0

3) 0

4) 0

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2 n can be >=32 depending on the X server and the keyboard being used with your workstation.

* See the text prior to this table for more information.

 Table 78. Choice Logical Devices (Values 1-4) Default Values

Choice Logical

Devices

Data Type 6090 5080 GDDM Inquiry

Choice device

number

I 1) LPFKs

2) 4-button

cursor

controller

3) PF keys

4) keyboard*

1) LPFKs

2) 4-button

cursor

controller

3) PF keys

4) keyboard*

1) PF keys

2) mouse or

tablet*

GPQLI [dev]

Number of

prompt/echo

types

I 1) 2

2) 1

3) 1

4) 1

1) 2

2) 1

3) 1

4) 1

1) 2

2) 1

GPQDCH [necho]

Available

prompt/echo

types (1, 2)

E 1) 1, 2

2) 1

3) 1

4) 1

1) 1, 2

2) 1

3) 1

4) 1

1) 1, 2

2) 1

GPQDCH [echo]

Default echo area 6[default]R 0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.28448,

0.0-0.28448,

0.0-0.28448*

0.0-0.24682,

0.0-0.17574,

0.0-0.424682*

GPQDCH [area]

128 The graPHIGS Programming Interface: Technical Reference

Table 78. Choice Logical Devices (Values 1-4) Default Values (continued)

Choice Logical

Devices

Data Type 6090 5080 GDDM Inquiry

Available

supported input

character sets

(PRIMARY, ALL)

E PRIMARY PRIMARY PRIMARY GPQPCS [csid]

Physical input

device type for

the measure

(1=BUTTON,

2=SCALAR,

3=2D_VECTOR)

E BUTTON BUTTON BUTTON GPQSPD

[category]

Physical input

device number for

the measure

I 1=LPFKs

2=cursor

keys

3=PF

keys

4=key-

board

1=LPFKs

2=cursor

keys

3=PF

keys

4=key-

board

1=LPFKs

2=mouse

buttons *

GPQSPD

[pdevice]

Maximum choice

alternatives

I 1) 32

2) 8

3) 41

4) 172

1) 32

2) 8

3) 1 to n

1

4) 138

1) 24

2) 3

GPQDCH [choice]

Default choice

alternative

I 1) 0

2) 0

3) 0

4) 0

1) 0

2) 0

3) 0

4) 0

1) 0

2) 0

Note:

1 n can be <=41 depending on the keyboard being used with your workstation.

* See the text prior to this table for more information.

 Table 79. Choice Triggers

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

For X

Choice 1 0 1 1 32 1

Choice 2 0 2 1 4* 2

Choice 3 0 3 See Table 65 See Table 65 3

Choice 4 0 4 See Table 65 See Table 65 4

For 6090

Choice 1 0 1 1 32 1

Choice 2 0 2 1 4* 2

Choice 3 0 3 1 41 3

Chapter 3. Workstation Description Tables 129

Table 79. Choice Triggers (continued)

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

Choice 4 0 4 See Table 65 See Table 65 4

For 5080

Choice 1 0 1 1 32* 1

Choice 2 0 2 1 4* 2

Choice 3 0 3 1 41* 3

Choice 4 0 4 See Table 65 See Table 65 4

For GDDM

Choice 1 0 1 1 24* None

Choice 2 0 2 1 3* None

Note: See the text prior to this table for more information.

Pick Devices

The pick device supports two secondary triggers. Secondary trigger #2 starts the pick correlation process.

Secondary trigger #1 ends the pick correlation process. For most workstations, these triggers default to the

pressing and releasing of buttons on a mouse or tablet device.

The device determines the minimum and maximum pick apertures. If the value you set in Set Pick

Aperture (GPPKAP) is less or greater than these limits, then it is automatically adjusted to the minimum or

maximum value.

A pick device in sample mode always returns a pick path length of zero.

The default pick aperture for all workstations is 2% of the smaller of the display surface x, y values.

The default echo area supported depends on the maximum display surface of your workstation. The

maximum display surface changes with various display hardware. Use the Inquire Default Pick Device

Data (GPQDPK) subroutine to obtain the default echo area of your workstation.

The available trigger types depend on the hardware configuration of your workstation. If you do not have

lighted program function keys (LPFKs) installed, then trigger type 1 is not available. The default high

qualifier of the pick trigger also also depends on the number of mouse buttons provided.

X and XSOFT

General Information Applying to All Adapters

v Pick Echo Type 1 (primitive highlighting) is not supported with exclusive-or echo.

v Pick triggers #1 and #2 are only available if a mouse or tablet is configured.

v The default echo area is defined by the maximum display surface. The maximum display surface

changes with various display hardware.

v When trigger by change in measure is active, the logical device is triggered by a change in the physical

device measure that results in a change in the logical device measure. The device can be triggered by

buttons regardless of the correlation state. A change in physical device measure only causes device

correlation if correlation is set to ON. Correlation can be set to ON by a button secondary trigger or

through the GPIPKC subroutine.

When trigger by change in measure is active, a NO-PICK event is reported (pick with depth of 0) when

the pick device leaves a pickable object and enters a non-pickable object or background.

130 The graPHIGS Programming Interface: Technical Reference

The graPHIGS API accumulates the distance from one event to the next and correlates only when the

low qualifier threshold is exceeded, except for the last event occurring in a chain of events. The last in a

chain of events is always correlated, regardless of the low qualifier. Events accumulated prior to the last

event are also correlated when they exceed the low qualifier threshold.

v Trigger when primary fires (trigger type -2) is valid only for secondary triggers. Low and high qualifiers

are not used and should be set to zero.

v POWER Gt4x (8 bit or 24 bit):

– Pick selection criteria, 4=FIRST_VISIBLE, 5=LAST_VISIBLE, 6=ALL_VISIBLE, are not supported.

6090

When the pick criteria is ALL, the application gets up to 20 items that pass through the pick aperture.

5080

Pick aperture size cannot be defined as less than two pixels.

GDDM

If a mouse or tablet is configured (they are mutually exclusive), this is the pick device. If no mouse or

tablet is configured, the cursor keys are used. The echo area is not evaluated. The Enter key and the PF

keys are triggers.

Picking on GDDM workstations is performed by using the . position of the cross hair. The picked primitive

is determined by examining the central structure storage based on this location. Your application may use

a deferral mode in which the screen image does not always match the central storage structure. In this

case the pick information may not match what the user is visually selecting. To avoid this situation, the

application should always update the workstation before the user interaction occurs.

 Table 80. Pick Logical Devices - X Workstation Default Values

Pick Logical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Pick device number I 1 1 1 1 GPQLI [dev]

Number of prompt/echo types I 1 1 1 1 GPDPK

[necho]

Available prompt/echo types (1) E 1 1 1 1 GPQDPK

[echo]

Default echo area 6[default]R 0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.240,

0.0-0.170,

0.0-0.240*

GPQDPK

[area]

Available supported input character sets

(PRIMARY, ALL)

E PRIMARY PRIMARY PRIMARY PRIMARY GPQPCS [csid]

Physical input device type for the measure

(1=BUTTON, 2=SCALAR, 3=2D_VECTOR)

E 2D_VECTOR 2D_VECTOR 2D_VECTOR 2D_VECTOR GPQSPD

[category]

Physical input device number for the measure I 1 (tablet or

mouse)

1 (tablet or

mouse)

1 (tablet or

mouse)

1 (tablet or

mouse)

GPQSPD

[pdevice]

Pick measure type (1=NORMAL, 2=EXTENDED) E EXTENDED EXTENDED EXTENDED EXTENDED GPQPKT

[type]

Maximum pick path depth I 32 32 32 16

Number of available pick selection criteria I 6* 6* 6* 3

Available pick selection criteria (1=FIRST,

2=LAST, 3=ALL, 4=FIRST_VISIBLE,

5=LAST_VISIBLE, 6=ALL_VISIBLE)

E FIRST,

LAST,

ALL*

FIRST,

LAST,

ALL,

FIRST_

VISIBLE,

LAST_

VISIBLE,

ALL_

VISIBLE*

FIRST,

LAST,

ALL,

FIRST_

VISIBLE,

LAST_

VISIBLE,

ALL_

VISIBLE*

FIRST,

LAST,

ALL

GPQIDD

[odata]

Initial pick path depth I 0 0 0 0

Chapter 3. Workstation Description Tables 131

Table 80. Pick Logical Devices - X Workstation Default Values (continued)

Pick Logical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Default pick correlation state (1=OFF, 2=ON) E OFF OFF OFF OFF

Default pick path order (1=TOP_FIRST,

2=BOTTOM_FIRST)

E TOP_FIRST TOP_FIRST TOP_FIRST TOP_FIRST

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 81. Pick Logical Devices Default Values

Pick Logical Devices Data Type 6090 5080 GDDM Inquiry

Pick device number I 1 1 1 GPQLI [dev]

Number of prompt/echo types I 1 1 1 GPQDPK [necho]

Available prompt/echo types (1) E 1 1 1 GPQDPK.htm

[echo]

Default echo area 6[default]R 0.0-0.425,

0.0-0.340,

0.0-0.425*

0.0-0.28448,

0.0-0.28448,

0.0-0.28448*

0.0-0.24682,

0.0-0.17574,

0.0-0.24682*

GPQDPK [area]

Available supported input character sets

(PRIMARY, ALL)

E PRIMARY PRIMARY PRIMARY GPQPCS [csid]

Physical input device type for the

measure (1=BUTTON, 2=SCALAR,

3=2D_VECTOR)

E 2D_VECTOR 2D_VECTOR 2D_VECTOR GPQSPD [category]

Physical input device number for the

measure

I 1 (tablet) 1 (tablet) 1 (tablet or mouse) GPQSPD [pdevice]

Pick measure type (1=NORMAL,

2=EXTENDED)

E EXTENDED NORMAL NORMAL GPQPKT [type]

Maximum pick path depth I 32 16 16

Number of available pick selection

criteria

I 6 1 1

Available pick selection criteria

(1=FIRST, 2=LAST, 3=ALL,

4=FIRST_VISIBLE, 5=LAST_VISIBLE,

6=ALL_VISIBLE)

E FIRST, LAST, ALL,

FIRST_ VISIBLE,

LAST_ VISIBLE,

ALL_ VISIBLE

LAST LAST GPQIDD [odata]

Initial pick path depth I 0 0 0

Default pick correlation state (1=OFF,

2=ON)

E OFF OFF OFF

Default pick path order (1=TOP_FIRST,

2=BOTTOM_FIRST)

E TOP_FIRST TOP_FIRST TOP_FIRST

Note: See the text prior to this table for more information.

 Table 82. Pick Triggers for X Workstation

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

Pick 1 0 2 1 4* -1, 1, 2, 3, 4*

Pick 1 1 2 1 4* -2, 1, 2, 3, 4*

Pick 1 2 2 5 8* -2, 1, 2, 3, 4*

Note: See the text prior to this table for more information.

132 The graPHIGS Programming Interface: Technical Reference

Table 83. Pick Triggers for 6090 Workstation

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

Pick 1 0 2 1 4* 1, 2, 3, 4*

Pick 1 1 2 1 4* 1, 2, 3, 4*

Pick 1 2 2 5 8* 1, 2, 3, 4*

Note: See the text prior to this table for more information.

 Table 84. Pick Triggers for 5080 Workstation

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

Pick 1 0 2 1 4* 1, 2, 3, 4*

Pick 1 1 2 1 4* 1, 2, 3, 4*

Pick 1 2 2 5 8* 1, 2, 3, 4*

Note: See the text prior to this table for more information.

 Table 85. Pick Triggers for GDDM Workstation

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

Pick 1 0 2 1 3 None

Pick 1 0 1 1 24 None

Pick 1 0 4 65537 65537 None

String Devices

Each workstation supports up to 16 string devices. By default, the graPHIGS API only provides one. To

modify the number of string devices, use the String Devices (STRDEVS) procopt. See STRDEVS (String

Devices).

The string is echoed in the lower left corner of each string device’s echo area.

The default echo area is defined by the maximum display surface size. The maximum display surface size

changes with various display hardware. Use the Inquire Default String Device Data (GPQDST) subroutine

to obtain the default echo area. Use the Inquire Maximum Display Surface Size (GPQDS) subroutine to

obtain the maximum display surface of your workstation.

You cannot trigger a national language string device by any trigger if the string device is in pre-editing

mode or if it has auxiliary translation windows present.

Only one prompt is visible on the screen at any given time. However, each string device maintains its own

current cursor position. When the application activates the device, the graPHIGS API positions the cursor

as specified by the Initialize String (GPINST) subroutine call or, if your application does not specify

GPINST, then the graPHIGS API positions the cursor at position 1. As you type, the graPHIGS API

updates the current cursor position appropriately. If you advance the cursor beyond the end of the current

string device’s input buffer, then it advances to the first position of the next string device’s input buffer. If

only one string device is active, then the cursor wraps around in the input buffer. If you are in insert mode

and you are typing in characters, then characters do not shift from one string device into the next and the

cursor does not advance to the next string device’s input buffer.

Chapter 3. Workstation Description Tables 133

The string device operates as follows:

 Key Action

Tab Forward keyInd Moves the cursor from its current position to the current cursor position in the next

active string device.

Tab Back key Moves the cursor from its current position back one active string device to that

device’s current cursor position.

Insert key Toggles between insert mode and replace mode.

Delete key Deletes the current character and shifts the succeeding characters left.

Left Arrow key Moves the cursor to the previous character or to the last position in the previous

active string device.

Right Arrow key Moves the cursor to the next character or to the first position in the next active string

device.

Double Left Arrow key Moves the cursor as if the Left Arrow key were pressed twice.

Double Right Arrow key Moves the cursor as if the Right Arrow key were pressed twice.

Backspace key Moves the cursor to the previous character, deletes it, and then shifts the succeeding

characters left. If the cursor is in the first position, this key has no effect.

Erase EOF key Clears the current string from the cursor to the end of the string.

Erase Field key Moves the cursor to the first position in the current string and then clears from there

to the end of the string.

Erase Input key Clears all string device input areas and places the cursor at the first position in the

active string device with the lowest device number.

Clear key Resets all string devices to their initial states and places the cursor at the initial

position in the active string device with the lowest device number.

Newline key Moves the cursor from its current position to the first position of the next string

device’s input buffer.

Home key Moves the cursor to the current position in the active string device with the lowest

device number.

Reset key Resets string device to replace mode and also resets any dead key sequence.

X and XSOFT

General Information Applying to All Adapters

This workstation supports all the above string editing keys except Double Left Arrow, Double Right Arrow,

Erase Input, Erase Field, Clear, Home, and Reset.

Each string device has only a primary trigger. This trigger is programmable. By default, a string device’s

trigger is the Enter key.

Unicode: (character set identifier 131) is not supported.

Kanji: String editing within a Kanji (character set identifiers 128 and 134) string device involves a

conversion between the characters that are actually typed on the keyboard, and the final Kanji characters.

Characters that are first typed in the string device, may appear in the reverse video area or they may be

underlined, or they may appear in the reverse video area and be underlined. This mode is the pre-editing

mode. During pre-editing, no graPHIGS API input events are triggered by the physical button device 4 (the

keyboard). Pressing the Enter key ends pre-editing mode. Then, when you press the string device trigger

(typically when you press the Enter key again), the graPHIGS API triggers the string device.

Indicator:

The graPHIGS API displays the indicators of a graPHIGS API string device at the rightmost position of the

string device echo area. Two indicators are displayed in the indicator boxes:

v DBCS (double-byte character set) shift indicator

v Alphanum/Hiragana/Katakana shift indicator

134 The graPHIGS Programming Interface: Technical Reference

The Romaji/Kana Conversion (RKC) shift indicator is displayed as a small filled rectangle at the inside

upper right of the Alphanum/Hiragana/Katakana shift indicator box. If the state is RKC on and MAX is

maximum byte length of the Kanji string device, you can input MAX-2 byte length text in it. To input MAX

byte length, you have to change the RKC state to off.

DBCS/SBCS shift state:

The graPHIGS API for the AIXwindows Environment/6000 string device supports the double-byte character

set (DBCS) state only. The DBCS/SBCS shift toggle key has no meaning. The maximum input buffer size

and default initial string input buffer size is 120 bytes.

Hangul:

String editing within a Hangul (character set identifier 129) string device involves a conversion between the

characters actually typed on the keyboard, and the final Hangul characters. Characters that are typed in

the string device while in Hangul mode may be underlined. While composing Hangul characters, the

graPHIGS API string device may not be triggered until the composed character is complete.

IBM Personal graPHIGS API differs from Hangul in the following ways:

v Indicator

The graPHIGS API displays the indicators of a graPHIGS API string device at the rightmost position of

the string device echo area. Two indicators are displayed in the indicator boxes:

– DBCS (double-byte character set) shift indicator

The graPHIGS API for the AIXwindows Environment/6000 string device supports the double-byte

character set (DBCS) state only. The DBCS/SBCS shift toggle key has no meaning.

– English/Hangul/Jamo shift indicator

v

v Simplified Chinese: String editing within a Simplified Chinese (character set identifier 132) string device

involves a conversion between the characters actually typed on the keyboard, and the final Simplified

Chinese characters. Characters that are first typed in the string device may appear in reverse video.

This mode is the pre-editing mode. During pre-editing, no graPHIGS API input events are triggered by

the physical button device 4 (the keyboard). Pressing the convert, non-convert, reset (Escape) key ends

pre-editing mode. Then, when you press the string device trigger (typically when you press the Enter

key), the graPHIGS API triggers the string device.

IBM Personal graPHIGS API differs from Simplified Chinese in the following ways:

– Indicator

The graPHIGS API displays the indicators of a graPHIGS API string device at the rightmost position

of the string device echo area. Up to four indicators are displayed in the indicator boxes:

- Chinese/English shift indicator

- Half/Full-width shift indicator

The graPHIGS API supports the double-byte character set (DBCS) state only. The Half/Full-width

shift toggle key has no meaning.

- Row-Column/ Pinyin / English / Intelligent ABC conversion shift indicator

- Association shift indicator (used only with Pinyin)

– No error messages are displayed

v Traditional Chinese: String editing within a Traditional Chinese (character set identifier 130) string device

involves a conversion between the characters that are actually typed on the keyboard, and the final

Traditional Chinese characters. Characters that are first typed in the string device, may appear in the

reverse video or be underlined, or may appear both in the reverse video and be underlined. This mode

is the pre-editing mode. During pre-editing, no graPHIGS API input events are triggered by the physical

Chapter 3. Workstation Description Tables 135

button device 4 (the keyboard). Pressing the convert, non-covert or reset (Escape) key ends pre-editing

mode. Then, when you press the string device trigger (typically when you press the Enter key), the

graPHIGS API triggers the string device.

The graPHIGS API string device returns the Traditional Chinese codepoints using the IBM-927 character

encoding (double-bytes only).

IBM Personal graPHIGS API differs from Traditional Chinese in the following ways:

– Indicator

The graPHIGS API displays the indicators of a graPHIGS API string device at the rightmost position

of the string device echo area. Three indicators are displayed in the indicator boxes:

- Chinese/English shift indicator

- Half/Full-width shift indicator

The graPHIGS API supports the double-byte character set (DBCS) state only. The Half/Full-width

shift toggle key has no meaning.

- Tsang-Jye/Phonetic/Internal-Code shift indicator

– No error messages are displayed

The graPHIGS API does not display error messages for messages such as No Word or Wrong Key.

6090

v In general, it is not possible to change the input character set for string input; the character set is

determined by the 6090 Language Customization Feature. The only exception is when using the IBM

6090 Japanese Language Feature; then the input character set can be assigned to either Kanji

(character set identifier 128), or Katakana (character set identifier 6), which is the default.

v Hangul (character set identifier 129), Traditional Chinese (character set identifier 130), Simplified

Chinese (character set identifier 132), Unicode (character set identifier 131), and Kanji supporting the

IBM-943 encoding (character set identifier 134) are not supported.

v This workstation supports all the above string editing keys except Double Left Arrow, Double Right

Arrow, Erase Input, Erase Field, Clear, Home, and Reset.

v Each string device has only a primary trigger. This trigger is programmable. By default, a string device’s

trigger is the Action key.

5080

v In general, it is not possible to change the input character set for string input; the character set is

determined by the 5085 Language Customization Feature. The only exception is when using either the

IBM 5080 Japanese Language Feature or the IBM 5080 Korean Language Feature. Only one is

supported at a time, not both. With the Japanese Language Feature, you can assign the input character

set to either Kanji (character set identifier 128) or Katakana (character set identifier 6), which is the

default. With the Korean Language Feature, you can assign the input character set to either Hangul

(character set identifier 129) or Single-byte Korean (character set identifier 9), which is the default.

v Traditional Chinese (character set identifier 130) is not supported.

v Simplified Chinese (character set identifier 132) is not supported.

v Unicode (character set identifier 131) is not supported.

v Kanji (character set identifier 128): If you want to provide the additional characters for the echoing of

string device input, you need to update the IBM 5080 Japanese Language Feature.

v Kanji support for the IBM-943 encoding (character set 134), is not supported.

v Each string device has only a primary trigger. This trigger is programmable. By default, a string device’s

trigger is the Action key.

136 The graPHIGS Programming Interface: Technical Reference

GDDM

v The display area is divided into cells. The cells are rectangular in shape, arranged in rows and columns,

and each can display one character. Therefore, because the echo area of a string device is mapped to

the nearest row/column, the actual echo area may not exactly correspond to the one specified.

v The action of each key is dependent on the type of GDDM device being used. Therefore, the string

device may not operate as described above. Refer to a GDDM keyboard manual for a list of key

actions.

v For prompt/echo type 2, the GDDM prompt string and input buffer share the same screen field. The

length of this field is limited to the maximum input buffer size in bytes. One byte of this field is reserved

for GDDM use. The total length, in bytes, of the prompt string and the length of the input buffer plus the

extra byte required for GDDM must be less than or equal to the maximum input buffer size.

v Kanji (character set identifiers 128 and 134), Hangul (character set identifier 129), Traditional Chinese

(character set identifier 130), and Simplified Chinese (character set identifier 132), and Unicode

(character set identifier 131) are not supported.

 Table 86. String Logical Devices - X Workstation Default Values

String Logical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

String device number I 1-16* 1-16* 1-16* 1-16* GPQLI [dev]

Number of prompt/echo types I 2 2 2 2 GPQDST

[necho]

Available prompt/echo types (1, 2) E 1, 2 1, 2 1, 2 1, 2 GPQDST

[echo]

Default echo area 6[default]R 0.0-0.425,

0.0-0.0133,

0.0-0.425*

0.0-0.425,

0.0-0.0133,

0.0-0.425*

0.0-0.425,

0.0-0.0133,

0.0-0.425*

0.0-0.28442,

0.0-0.00711,

0.0-0.28448 *

GPQDST

[area]

Available supported input character sets

(1=PRIMARY, 2=ALL)

E ALL ALL ALL ALL

Physical input device type for the measure

(1=BUTTON, 2=SCALAR, 3=2D_VECTOR)

I BUTTON BUTTON BUTTON BUTTON GPQSPD

[category]

Physical input device number for the measure I 4 (keyboard) 4 (keyboard) 4 (keyboard) 4 (keyboard) GPQSPD

[pdevice]

Maximum input buffer size I 120 120 120 120 GPQDST [size]

Default initial string input buffer I 120 120 120 120 GPQDST

[buflen]

Length of default initial string I 0 0 0 0 GPQPCS

[strlen]

Default editing mode I 1 1 1 1 GPQDST

[editpos]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 87. String Logical Devices Default Values

String Logical

Devices

Data Type 6090 5080 GDDM Inquiry

String device

number

I 1-16* 1-16* 1-16* GPQLI [dev]

Number of

prompt/echo

types

I 2 2 2 GPQDST [necho]

Available

prompt/echo

types (1, 2)

E 1, 2 1, 2 1, 2 GPQDST [echo]

Chapter 3. Workstation Description Tables 137

Table 87. String Logical Devices Default Values (continued)

String Logical

Devices

Data Type 6090 5080 GDDM Inquiry

Default echo area 6[default]R 0.0-0.425,

0.0-0.0133,

0.0-0.425*

0.0-0.28448,

0.0-0.00711,

0.0-0.28448*

0.0-0.24682,

0.0-0.17574,

0.0-0.24682*

GPQDST [area]

Available

supported input

character sets

(1=PRIMARY,

2=ALL)

E ALL ALL PRIMARY

Physical input

device type for

the measure

(1=BUTTON,

2=SCALAR,

3=2D_VECTOR)

E BUTTON BUTTON BUTTON GPQSPD

[category]

Physical input

device number for

the measure

I 4 (keyboard) 4 (keyboard) 4 (keyboard) GPQSPD

[pdevice]

Maximum input

buffer size

I 160 80 80* GPQDST [size]

Default initial

string input buffer

size

I 160 80 80 GPQDST [buflen]

Length of default

initial string

I 0 0 0 GPQST [strlen]

Default editing

position

I 1 1 1 GPQDST

[editpos]

Note: See the text prior to this table for more information.

 Table 88. String Triggers

Device Number Trigger Level Default Trigger

Type

Default Low

Qualifier

Default High

Qualifier

Available Trigger

Types

For the X workstation

String 1-16 0 4 65538 65538 1, 2, 3, 41 *

For the 6090 and 5080

String 1-16 0 4 65537 65537 1, 2, 3, 41 *

Note:

1 GDDM has no available trigger types.

* See the text prior to this table for more information.

Button Devices

A button device reports a button number when a button is pressed. Some devices also report the release

of a button. In general, workstations support the following button devices:

v Lighted Program Function Keys (LPFKs)

v Pointing devices

138 The graPHIGS Programming Interface: Technical Reference

– Four-button cursor controller

– Stylus

– Mouse

v Program Function (PF) keys on the keyboard

v Keyboard.

See The graPHIGS API and X Input Relationship section more information concerning (LPFKs).

The effect of button physical device 4 (keyboard) as a trigger is limited when processing national

languages. During pre-editing mode or when auxiliary translation windows are present, the keyboard does

not provide input to any measure or trigger process. For example, during pre-editing mode, an application

does not receive any choice device 4 input events.

The presence of flags and number of value range descriptors depend on the hardware configuration of

your workstation.

The flag attribute 2=NOT_PRESENT_CAN_BE_EMULATED is available via the Create Input Device (CLDEVS)

procopt. See CLDEVS (Create Input Device).

 Table 89. Button Physical Devices (Values 1 - 4) - X Default Values

Button Physical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Button device number I 1) LPFKs

2) pointing

device

3) PF keys

4) keyboard

1) LPFKs

2) pointing

device

3) PF keys

4) keyboard

1) LPFKs

2) pointing

device

3) PF keys

4) keyboard

1) LPFKs

2) pointing

device

3) PF keys

4) keyboard

GPQPDC

[device]

Flags (1=NOT_PRESENT_

CANNOT_BE_ EMULATED,

2=NOT_PRESENT_

CAN_BE_ EMULATED,

3=PRESENT_

CANNOT_BE_

EMULATED,

4=PRESENT_CAN_

BE_EMULATED)

E PRESENT_

CAN_BE_

EMULATED*

PRESENT_

CAN_BE_

EMULATED*

PRESENT_

CAN_BE_

EMULATED*

PRESENT_

CAN_BE_

EMULATED*

GPQPDC

[flags]

Device sub-type (1=KEYBOARD, 2=OTHER) E 1) OTHER

2) OTHER

3) OTHER

4) KEYBOARD

1) OTHER

2) OTHER

3) OTHER

4) KEYBOARD

1) OTHER

2) OTHER

3) OTHER

4) KEYBOARD

1) OTHER

2) OTHER

3) OTHER

4) KEYBOARD

GPQPDC

[type]

Number of value range descriptors I 1) 1

2) 1*

3) 1

4) 19*

1) 1

2) 1*

3) 1

4) 19*

1) 1

2) 1*

3) 1

4) 19*

1) 1

2) 1*

3) 1

4) 19*

GPQPDC

[totnum]

Value range descriptors I 1) 1-32

2) 1-8*

3) 1 to n

2

1) 1-32

2) 1-8*

3) 1 to n

2

1) 1-32

2) 1-8*

3) 1 to n

2

1) 1-32

2) 1-8*

3) 1 to n

2

GPQPDC

[vrange]

Chapter 3. Workstation Description Tables 139

Table 89. Button Physical Devices (Values 1 - 4) - X Default Values (continued)

Button Physical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

2n can be >=32 depending on the X server and the keyboard being used with your workstation.

* See the text prior to this table for more information.

 Table 90. Button Physical Devices Default Values

Button Logical Devices Data Type 6090 5080 GDDM Inquiry

Button device number I 1) LPFKs

2) pointing device

3) PF keys

4) keyboard

1) LPFKs

2) pointing device

3) PF keys

4) keyboard

1) PF keys

2) mouse

4) keyboard

GPQPDC

[device]

Flags (1= NOT_PRESENT_CANNOT_BE_EMULATED, 2=

NOT_PRESENT_CAN_BE_EMULATED, 3=

PRESENT_CANNOT_BE_EMULATED, 4=

PRESENT_CAN_BE_EMULATED)

E PRESENT_ CAN_

BE_ EMULATED*

PRESENT_

CANNOT_ BE_

EMULATED

PRESENT_

CANNOT_ BE_

EMULATED

GPQPDC [flags]

Device sub-type (1=KEYBOARD, 2=OTHER) E 1) OTHER

2) OTHER

3) OTHER

4) KEYBOARD

1) OTHER

2) OTHER

3) OTHER

4) KEYBOARD

1) OTHER

2) OTHER

4) KEYBOARD

GPQPDC [type]

Number of value range descriptors I 1) 1

2) 1

3) 1

4) 19*

1) 1

2) 1*

3) 1

4) 19

1) 1

2) 1

4) 2

GPQPDC

[totnum]

Value range descriptors I 1) 1-32

2) 1-8

3) 1-41

1) 1-32

2) 1-8*

3) 1- n

1

1) 1-24

2) 1-3

4) 65537 &

65539

GPQPDC

[vrange]

Note:

1 n can be <=41 depending on the keyboard being used with your workstation.

* See the text prior to this table for more information.

Scalar Devices

A scalar device reports a value within some continuous range. The graPHIGS API supports dial scalar

devices which report values as relative values.

See Ref #1. under ″The graPHIGS API and X Input Relationship″ section in Chapter 2 for information

concerning scalar devices (dials).

The presence of flags depend on the hardware configuration of your workstation. The flag attribute

2=NOT_PRESENT_CAN_BE_EMULATED is available via the Create Input Device (CLDEVS) procopt. See CLDEVS

(Create Input Device).

140 The graPHIGS Programming Interface: Technical Reference

Table 91. Scalar Devices - X Workstation Default Values

Scalar Physical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Scalar device number I 1-8 (dials) 1-8 (dials) 1-8 (dials) 1-8 (dials) GPQPDC

[pdevice]

Flags (1=

NOT_PRESENT_CANNOT_BE_EMULATED, 2=

NOT_PRESENT_CAN_BE_EMULATED, 3=

PRESENT_CANNOT_BE_EMULATED, 4=

PRESENT_CAN_BE_EMULATED)

E PRESENT_ CAN_

BE_ EMULATED*

PRESENT_ CAN_

BE_ EMULATED*

PRESENT_ CAN_

BE_ EMULATED*

PRESENT_ CAN_

BE_ EMULATED*

GPQPDC

[flags]

Device sub-type (1=ABSOLUTE, 2=RELATIVE) E RELATIVE RELATIVE RELATIVE RELATIVE GPQPDC [type]

Number of value range descriptors I 1 1 1 1 GPQPDC

[totnum]

Value range descriptors I 0-256 0-256 0-256 0-256 GPQPDC

[vrange]

Note:

1See the text prior to General Workstation Facilities, for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 92. Scalar Devices Default Values

Scalar Physical Devices Data Type 6090 5080 Inquiry

Scalar device number I 1-8 (dials) 1-8 (dials) GPQPDC [pdevice]

Flags (1= NOT_PRESENT_CANNOT_BE_EMULATED, 2=

NOT_PRESENT_CAN_BE_EMULATED, 3=

PRESENT_CANNOT_BE_EMULATED, 4= PRESENT_CAN_BE_EMULATED)

E PRESENT_ CAN_ BE_

EMULATED*

PRESENT_ CAN_ BE_

EMULATED

GPQPDC [flags]

Device sub-type (1=ABSOLUTE, 2=RELATIVE) E RELATIVE RELATIVE GPQPDC [type]

Number of value range descriptors I 1 1 GPQPDC [totnum]

Value range descriptors I 0-256 0-256 GPQPDC [vrange]

Note: See the text prior to this table for more information.

Vector Devices

A vector device reports an x, y value within some continuous range. The device can provide either

absolute or relative values.

The graPHIGS API supports 2D vector devices which include the tablet and the mouse. The tablet reports

absolute values and the mouse reports relative values.

The value range descriptors depend on the hardware configuration of your workstation.

See The graPHIGS API and X Input Relationship section for more information concerning vector devices.

 Table 93. Vector Physical Devices - X Workstation Default Values

Vector Physical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Vector device number I 1 (tablet or

mouse)

1 (tablet or

mouse)

1 (tablet or

mouse)

1 (tablet or

mouse)

GPQSPD

[pdevice]

Flags (1=

NOT_PRESENT_CANNOT_BE_EMULATED, 2=

NOT_PRESENT_CAN_BE_EMULATED, 3=

PRESENT_CANNOT_BE_EMULATED, 4=

PRESENT_CAN_BE_EMULATED)

E PRESENT_ CAN_

BE_ EMULATED

PRESENT_ CAN_

BE_ EMULATED

PRESENT_ CAN_

BE_ EMULATED

PRESENT_ CAN_

BE_ EMULATED

GPQPDC

[flags]

Type of physical input device (1=ABSOLUTE,

2=RELATIVE)

E ABSOLUTE ABSOLUTE ABSOLUTE ABSOLUTE GPQPDC [type]

Number of value range descriptors I 2 2 2 2 GPQPDC

[totnum]

Chapter 3. Workstation Description Tables 141

Table 93. Vector Physical Devices - X Workstation Default Values (continued)

Vector Physical Devices Data Type POWER GT4

Family and

POWER GTO

DWA

Adapters1

XSOFT

Adapters1

XLIB Adapters Inquiry

Value range descriptors I[default]2

I[default]2

(0,65535),

(0,65535)*

(0,65535),

(0,65535)*

(0,65535),

(0,65535)*

(0,65535),

(0,65535)*

GPQPDC

[vrange]

Note:

1See the text prior to General Workstation Facilities for a list of DWA and XSOFT Adapters.

 * See the text prior to this table for more information.

 Table 94. Vector Physical Devices Default Values

Vector Logical Devices Data Type 6090 5080 GDDM Inquiry

Vector device number I 1 (tablet) 1 (tablet) 1 (mouse,

keyboard, or

tablet)

GPQSPD

[pdevice]

Flags

(1= NOT_PRESENT_CANNOT_BE_EMULATED,

2=NOT_PRESENT_CAN_BE_EMULATED,

PRESENT_CANNOT_BE_EMULATED,

4=PRESENT_CAN_BE_EMULATED)

E PRESENT_ CAN_

BE_ EMULATED

PRESENT_ CANNOT_

BE_ EMULATED

PRESENT_ CANNOT_

BE_ EMULATED

GPQPDC [flags]

Type of physical input device (1=ABSOLUTE,

1=RELATIVE)

E ABSOLUTE ABSOLUTE ABSOLUTE or

RELATIVE

GPQPDC [type]

Number of value range descriptors I 2 2 2 GPQPDC

[totnum]

Value range descriptors I[default]2

I[default]2

(0,1279), (0,1023) (0,1023), (0,1023) (0,1023), (0,1023) GPQPDC

[vrange]

Note: See the text prior to this table for more information.

Break Action

The break action for most workstations is the Cancel key. The break action applies to all device classes

when a device is in 1=REQUEST mode.

The available trigger types depend on the hardware configuration of your workstation. If you do not have

lighted program function keys (LPFKs) installed, then trigger type 1 is not available.

 X and

XSOFT

The break action is programmable. The Scroll Lock key is the default break action.

6090, 5080 The break action is programmable.

GDDM Press the Clear key on the keyboard. The break action is not programmable.

The following table describes the available break triggers and the default break action.

 Table 95. Break Action Triggers

Default Trigger Type Default Trigger Qualifier Available Trigger Types

4 65539 1, 2, 3, 4*

Note: See the text prior to this table for more information.

142 The graPHIGS Programming Interface: Technical Reference

Part 2. Distributed graPHIGS API

© Copyright IBM Corp. 1994, 2002 143

144 The graPHIGS Programming Interface: Technical Reference

Chapter 4. The graPHIGS API Nucleus

Connecting to the Nucleus

Version 2 of the graPHIGS API separates the application interface functions from the graphic management

functions by introducing the concept of a shell and a nucleus. The shell is a subroutine library that is part

of the application process. It accepts the call from the application, checks the parameters, and transmits

the request to the nucleus.

The nucleus receives and processes requests from the application process. A graPHIGS API nucleus

controls resources that are created by the application process. These resources include workstations

(represented by a workstation state list), structure stores (represented by a structure store state list),

image boards, and font directories. The requests sent to the nucleus are directed to one of these

resources controlled by the nucleus.

All releases of the graPHIGS API follow the Version 2 architecture. For Version 2 of the graPHIGS API, a

nucleus may reside in any of three environments:

v S/390 environment (VM or MVS)

v AIX environment

v 6090 environment

Before your application’s request can be sent to a specific nucleus for processing, the application process

must connect to that nucleus. Connecting to a nucleus involves selecting a connection method supported

by the nucleus and a corresponding nucleus connection specification. Connection methods and connection

specifications are selected by explicitly issuing a Connect to Nucleus subroutine call (GPCNC) and/or by

specifying a default option (DEFNUC) in either the External Defaults File (EDF) or the Application Default

Interface Block (ADIB). The specified connection method and specification can also be controlled through

use of the TONUC default option. See Advanced Concepts for more information about connecting to a

nucleus.

Managing the graPHIGS API Nucleus in AIX

In the AIX environment, a remote graPHIGS API nucleus must have been explicitly started before the

application attempts connection to it. The graPHIGS API install procedures provide commands to start the

nucleus as a process, manage access to it, and to terminate the process and free up the resources at the

close of the application. Errors from these procedures do not go to the standard error path but rather

return through the application shells as graPHIGS API messages.

Each command has an associated shell script which supplies default values to it. You may modify the

scripts to add additional parameters, tailoring them to start customized environments.

The Remote graPHIGS API Nucleus’s TCP/IP Port Number (RS/6000

only)

In order for an application to communicate via the SOCKETS connection method (TCP/IP) to a remote

graPHIGS API nucleus, the graPHIGS API shell, which is linked with the application, must know the name

of the host on which the graPHIGS API nucleus is running and the TCP/IP port number, on which the

graPHIGS API nucleus is ″listening″ for connections. The hostname is provided as the first part of the

connection specification when the host connects to the nucleus. The TCP/IP port number must be

determined at run time.

The remote graPHIGS API nucleus, when started (with the gPinit command), needs to know on which

TCP/IP port number to ″listen″ for connections from graPHIGS API shells.

© Copyright IBM Corp. 1994, 2002 145

The TCP/IP port number is determined by adding the nucleus connection number of the target remote

graPHIGS API nucleus and the base port number as defined in the system file /etc/services. The default

base port number is 8000.

Notes:

1. The remote graPHIGS API nucleus uses the /etc/services file on the same host on which it is started.

The graPHIGS API shell uses the /etc/services file on which the application is running. Therefore, it is

mandatory that the base port number, as defined in the /etc/services file on each host, is the same for

all hosts which use the remote graPHIGS API nuclei.

2. The use of a hostname alias to direct routing over redundant networks may result in refused

connections because the graPHIGS API remote nucleus and gPgated authorize access by hostname.

When the gPhost or the chgPcon command is issued, the target hostname must match the hostname

configured on the target host.

3. The user should be aware of potential conflicts with other services defined in /etc/services. Remote

graPHIGS API nuclei with identification numbers of 0 through 255 will attempt to use TCP/IP port

numbers 8000 through 8255, respectively, although only the base port number of 8000 will be reserved

in /etc/services.

The Nucleus Description Table

The Nucleus Description Table contains configuration information for a graPHIGS API nucleus. The values

in the NDT are provided by and initialized by the system. Inquiries to an NDT return information about a

nucleus’ default values and general characteristics.

 Table 96. Nucleus Facilities

Nucleus

Facilities

Data Type 6090 Values S/390 Values AIX Values Inquiry

Nucleus storage

size

I n bytes No limit1 No limit1 GPQNCS [size]

Note:

1 ″No limit″ returns a 0 on the inquiry.

 Table 97. Nucleus Description Table for Workstation

Workstation

Facilities

Data Type 6090 Values S/390 Values AIX Values Inquiry

Maximum number

of simultaneously

opened

workstations

I 1 No limit1 No limit1 N/A

Number of

available generic

workstation types

I 1 3 9 GPQWTN

[totnum]

Available generic

workstation types

S ’6090 ’ ’5080 ’

’GDDM ’

’GDF ’

’X ’

’GDF ’

’CGM ’

’XLIB ’

’XDWA ’

’NATIVE ’

’XPEX ’

’XSOFT ’

’IMAGE ’

GPQWTN

[wstype]

Note:

1 ″No limit″ returns a 0 on the inquiry.

146 The graPHIGS Programming Interface: Technical Reference

Table 98. Nucleus Description Table for Structure Store

Structure Store

Facilities

Data Type 6090 Values S/390 Values AIX Values Inquiry

Maximum number

of simultaneously

existing structure

stores

I 1 No limit1 No limit1 N/A

Maximum number

of simultaneously

associated

workstations

I 1 4 322 GPQWTN [maxa]

Number of

available structure

store types

I 1 1 1 N/A

Available

structure store

types (NORMAL)

E NORMAL NORMAL NORMAL N/A

Note:

1 ″No limit″ returns a 0 on the inquiry.

2 See MAXWKS (Maximum Workstation Support) for more details.

 Table 99. Nucleus Description Table for Image Board

Image Board

Facilities

Data Type 6090 Values S/390 Values AIX Values Inquiry

Maximum number

of simultaneously

existing image

boards

I No limit1 N/A No limit1 N/A

Maximum number

of simultaneously

associated

workstations

I 1 N/A No limit1 N/A

Number of

available image

board types

I 1 N/A 1 N/A

Available image

board types

(NORMAL)

E NORMAL N/A NORMAL N/A

Maximum image

board size

2[default]I No limit1 N/A No limit1 GPQIBF [n,v]

Number of

available image

board bit depths

I 5 N/A 5 GPQIBF [totnum]

Available image

board bit depths

(bit depth 1, 2, 4,

8, 12)

E 1, 2, 4, 8, 12 N/A 1, 2, 4, 8, 12 GPQIBF [depth]

Number of

available

two-operand pixel

operations

I 1 N/A 1 GPQPO [totnum]

Chapter 4. The graPHIGS API Nucleus 147

Table 99. Nucleus Description Table for Image Board (continued)

Image Board

Facilities

Data Type 6090 Values S/390 Values AIX Values Inquiry

List of available

two-operand pixel

operations

(REFLECTION)

E REFLECTION N/A REFLECTION GPQPO [op]

Number of

available

three-operand

pixel operations

I 2 N/A 2 GPQPO [totnum]

List of available

three-operand

pixel operations

(LOGICAL

OPERATION,

ARITHMETIC

OPERATION)

E LOGICAL

OPERATION,

ARITHMETIC

OPERATION

N/A LOGICAL

OPERATION,

ARITHMETIC

OPERATION

GPQPO [op]

Number of

available pixel

data formats

I 1 N/A 1 N/A

Available pixel

data formats

(PIXEL ARRAY)

E PIXEL ARRAY N/A PIXEL ARRAY N/A

Note:

1 ″No limit″ returns a 0 on the inquiry.

 Table 100. Nucleus Description Table for Font Directory

Font Directory

Facilities

Data Type 6090 Values S/390 Values AIX Values Inquiry

Maximum number

of simultaneously

existing font

directories

I 1 No limit1 No limit1 N/A

Maximum number

of simultaneously

associated

workstations

I 1 No limit1 No limit1 N/A

Number of

available font

directory types

I 1 1 1 N/A

Available font

directory types

(NORMAL)

E NORMAL NORMAL NORMAL N/A

Note:

1 ″No limit″ returns a 0 on the inquiry.

148 The graPHIGS Programming Interface: Technical Reference

Table 101. Nucleus Description Table for Application Region

Application

Region Facilities

Data Type 6090 Values S/390 Values AIX Values Inquiry

Maximum number

of simultaneously

defined

application

regions1

I No limit2 N/A N/A N/A

Note:

1 The 6090 workstation supports as many application regions as storage is available. However, only up to three of

the distributed applications may connect to the 6090 nucleus at any one time.

2 ″No limit″ returns a 0 on the inquiry.

gPafut Command

Purpose

Recover an archive file that has been left in an incomplete state.

Syntax

 --------------- ---------------

 | | | |

gPafut --| |--| |--|

 -- -r fdesc1 -- -- -o fdesc2 --

Description

The gPafut command recovers the data in a specified archive file so that the archive file is usable by the

graPHIGS API. An archive file can be left in an unusable state when the application updating it (by

archiving structures to the file or deleting structures from the file) terminates abnormally. If the archive file

is incomplete, then the application receives one of two messages: 1110 CONCURRENT USAGE OF FILE a2 NOT

ALLOWED (because it appears that another application has already opened the file) or 1205 FILE IS NOT A

VALID graPHIGS ARCHIVE FILE (because various fields are set incorrectly).

Two options are available for use with the gPafut command:

 -r Specifies the recover option. The data in the archive file identified by fdesc1 is recovered.

-o Specifies the output option. The data in the archive file identified by fdesc1 is placed in the file

identified by fdesc2.

fdesc1 and fdesc2 identify archive files with the following information:

v For the AIX, [/path/]fn[screen

v For MVS, ddname

v For VM, fn ft [fm]

gPinit Command

Purpose

Starts a remote graPHIGS API nucleus.

Chapter 4. The graPHIGS API Nucleus 149

Syntax

 -- -n:0 ------ -- -s10 ----- ---------

 | | | | | |

gPinit --| |---| |---| |-->

 -- -n:nucid -- -- -snserv -- -- -ti --

 -- -IAFMTRACE.NUC -- ---- -w10 ------ -----------

 | | | | | |

 -->--| |---| |---| |-->

 -- -Itrfilename ---- -- -c:display -- -- -wnwks -

 --------- -- -p/tmp/.gP --- ----------

 | | | | | |

 -->--| | | | | |--|

 -- -a --- -- -pdappath ---- -- -r5 ---

Description

The gPinit command starts a remote graPHIGS API nucleus as a separate process named gP. The

nucleus is initialized with the default state list and resource stores. It is then ready to accept connections

from applications/graPHIGS API shells which connect to a remote nucleus and use this nucleus as the

connection specification.

The connection specification that should be used to connect to this nucleus is:

 [hostname]:nucid

v hostname is the name of the host on which the gPinit command was issued. If not specified, the

remote graPHIGS API nucleus is assumed to be running on the same host as the application/graPHIGS

API shell.

v nucid is the number specified with the -n option of the gPinit command (default is 0).

If gPinit is unsuccessful, the following message will appear at the terminal:

 AFM605 gP IS UNABLE TO START A REMOTE NUCLEUS

If unable to easily determine the cause for the failure, invoke gPq with the nucleus ID that you intended to

use:

gPq -n:nucid

If gPq returns the process ID of an active nucleus, you have tried to start a nucleus with an identifier that

is already in use. You must either terminate that active nucleus, or simply have your application connect to

the active nucleus.

If gPq does not return the process ID of an active nucleus, the previous nucleus with the same identifier

may not have terminated normally. To allow starting up another nucleus with the same identifier, issue

gPterm with the same identifier:

gPterm -n:nucid

gPinit should now be able to start a nucleus with that identifier.

Flags

 -n:nucid Specifies the numeric identification of this remote

graPHIGS API nucleus. This number is used in the

connection specification used by the application when

connecting to this nucleus. The default is 0.

-snserv Defines the maximum number of X workstation servers to

which this nucleus will be able to connect. The default is

10.

150 The graPHIGS Programming Interface: Technical Reference

-ti Enables internal trace. See The Personal graPHIGS

Programming Interface: Installation and Problem

Diagnosis.

-Itrfilename Specifies the internal trace path name. The default is

AFMTRACE.NUC.

-c:display Forces the nucleus to act in conjunction with the specified

X workstation server operating on the same host as the

nucleus. See the gPhost command.

-w:nwks Defines the maximum number of graPHIGS API

workstations that may be associated to a single structure

store. The default is ten. See Controlling the Environment

with Defaults and Nicknames for more information.

-a Enables the nucleus for DAP execution when the nucleus

is started. The default is that the nucleus is not enabled

for DAP execution.

-pdappath Specifies the file path for the temporary storage of

downloaded DAP files. The default file path is /tmp/.gP.

-r5 Specifies that the DAP to be executed should run as an

X11R5 client. The default is that the DAP would run as an

X11R6 client. This new option is especially useful for

DAPs that depend on X11R5 functionality which no longer

exists in X11R6; that is, XAsyncInput().

If the following message is observed while running an

X11R5 DAP, then restart the graPHIGS remote nucleus by

adding the -r5 option to the gPinit command:

Note: The XAsyncInput API is no longer

implemented in X11R6.

Examples

1. To start a remote graPHIGS API nucleus running with an identification number of 0, with the current

directory as its working directory:

gPinit

2. To start a remote graPHIGS API nucleus running with an identification number of 10, running in

conjunction with an X server number 0, with the current directory as its working directory:

gPinit -n:10 -c:0

3. To start a remote graPHIGS API nucleus running with an identification number of 0, with the current

directory as its working directory, and increase the number of servers to which it is able to connect to

20:

gPinit -s20

Files

 /usr/bin/gPinit

/usr/lpp/graPHIGS/bin/gP

Related Information

The gPhost command, gPq command, gPterm command, makegP command.

Chapter 4. The graPHIGS API Nucleus 151

gPhost Command

Purpose

Changes the access security handling characteristics for a remote nucleus.

Syntax

 -- -n:0 ------ -------------------------

 | | | -------------- |

gPhost---| |---| | | |-->

 -- -n:nucid -- -------| |----

 ^ -- hostname -- |

 | |

 |-------------------|

 ------- ---------------

 | | | |

 -->--| |--| |-->

 -- + -- -- hostname ---

Description

This command adds or deletes hosts from the access list maintained by the specified nucleus, or displays

the current access list for the specified nucleus. gPhost may also be used to disable or enable host

access checking. The nucleus must reside on the same host as where the command is issued.

Entering gPhost with no arguments, other than a -n, displays the current host access list for the specified

nucleus.

If the specified nucleus was started and defined to run in conjunction with an X server (via gPinit with the

-c flag), the server’s security characteristics will be used in addition to whatever characteristics are defined

for the nucleus. In this case, any host which is permitted to access the server will be allowed to access the

nucleus.

The default access list for a remote nucleus is only the current host. To allow an application running on

another host to connect to the specified nucleus, the other host must be on the access list of the nucleus,

or access checking must be disabled.

Additional hosts may be added to the default host access list by creating the file /etc/gP?.hosts (the ? is

the identifier of the nucleus for which to enable access).

Entering gPhost with a + or a - as a flag by itself will disable or enable, respectively, host access checking

for the specified nucleus.

If an application attempts to connect to a remote nucleus from a host which is not on the nucleus’ host

access list, the application will receive the graPHIGS API error number 208.

Flags

 -n:nucid Specifies the numeric identification of the remote

graPHIGS API nucleus. The default is 0.

-hostname Deletes the hostname from the access list of the specified

nucleus. If no host name follows the -, host access

checking is disabled.

+hostname Adds the hostname to the access list of the specified

nucleus. If no host name follows the +, host access

checking is enabled. The + is optional; if a hostname is

specified alone, it will be added to the access list.

152 The graPHIGS Programming Interface: Technical Reference

Examples

1. To display the current host access list for the nucleus whose identification number is 2:

gPhost -n:2

2. To disable access checking for the nucleus whose identification is 1:

gPhost -n:1 +

3. To add the hosts named ’xyz’ and ’abc’ to the access list for the nucleus whose identification is 0:

gPhost +xyz +abc

Files

 /usr/bin/gPhost

/usr/lpp/graPHIGS/bin/gphost

/etc/gP?.hosts

Related Information

The gPinit command.

gPq Command

Purpose

Inquire information about remote graPHIGS API nuclei.

Syntax

 | |

gPq ---| |

 --- -n:nucid -------

 ^ |

 |----------------|

Description

This command is intended to provide the user with a means of determining the state of remote graPHIGS

API nuclei.

Issuing gPq with no arguments will display a list of all currently active nuclei running on the same host

where the command is issued. The list consists of the nucleus’ name followed by the process ID of the

nucleus.

If one or more nucleus identifiers are specified, a list containing each specified nucleus ID and its process

ID is displayed. If information for a nucleus associated with a particular identifier could not be found,

message ″AFM0604″ will be displayed instead of the process ID. If a specified nucleus that was thought to

be active was deemed ″Not Active″, try gPq again. If the nucleus is still ″Not Active″, it may be in some

error state and should probably be terminated.

Flags

 -n:nucid Specifies the numeric identification of the remote

graPHIGS API nucleus to query.

Chapter 4. The graPHIGS API Nucleus 153

Examples

1. To display a list of all active remote graPHIGS API nuclei on the user’s system:

gPq

2. To display information about nuclei with identification numbers 0, 1, and 10:

gPq -n:0 -n:1 -n:10

Files

 /usr/bin/gPq

/usr/lpp/graPHIGS/bin/gpq

Related Information

The gPinit command, gPterm command.

gPterm Command

Purpose

Terminates the specified remote graPHIGS API nucleus.

Syntax

 -- -n:0 -------

 | |

gPterm ---| |

 -- -n:nucid ---

Description

This command will stop the nucleus and release resources back to the operating system. The command

must be issued from the same host as where the nucleus was started.

This command will also release resources held by a nucleus which terminated abnormally.

Flags

 -n:nucid Specifies the numeric identification of the remote

graPHIGS API nucleus. The default is 0.

Files

 /usr/bin/gPterm

/usr/lpp/graPHIGS/bin/gpterm

Related Information

The gPinit command.

154 The graPHIGS Programming Interface: Technical Reference

makegP Command(AIX PS/2 only)

Purpose

Relinks the remote graPHIGS API nucleus. This command is not provided in graPHIGS API on the

RS/6000.

Syntax

makegP

Description

This command relinks the remote graPHIGS API nucleus, allowing the end user to change which

workstations the nucleus will support. To use makegP, you must be a member of the system group or

have superuser authority. Be sure there are no remote graPHIGS nuclei active.

makegP is an interactive, menu-driven program.

Files

 /usr/bin/makegP

/usr/lpp/graPHIGS/bin/gP

/usr/lpp/graPHIGS/bin/gP.o

/usr/lpp/graPHIGS/bin/gPAPA.o

/usr/lpp/graPHIGS/bin/gPAPAGDF.o

/usr/lpp/graPHIGS/bin/gPNOWS.o

/usr/lpp/graPHIGS/bin/gPX.o

/usr/lpp/graPHIGS/bin/gPXGDF.o

/usr/lib/libgP.a

Chapter 4. The graPHIGS API Nucleus 155

156 The graPHIGS Programming Interface: Technical Reference

Chapter 5. graPHIGS API Host and Workstation Connectivity

This chapter describes the following sections:

v The graPHIGS API Gateway Daemon

v The SOCKETS Connection Method

v graPHIGS/GAM Direct Connection

The graPHIGS API Gateway Daemon

Overview

The graPHIGS API gateway daemon, gPgated, is a process which enables a GDDM/graPHIGS API

application using GAM to access a graPHIGS API remote nucleus, and graPHIGS API workstations

managed by it. gPgated uses one or more IBM RS/6000 Host Interface Attachment (HIA) features

connected to an IBM 5088 or 6098 communications controller to communicate to graPHIGS API nuclei

running locally, or to graPHIGS API nuclei running remotely via TCP/IP over a LAN. The following figure is

a high-level diagram that represents the components of this configuration:

© Copyright IBM Corp. 1994, 2002 157

The configuration is flexible.A few of the options are:

v Multiple graPHIGS API gateway daemons can exist on a LAN.

v Multiple gateway daemons can run on a RS/6000.

Figure 2. GDDM/graPHIGS API Application to graPHIGS API Remote Nucleus Flow. This diagram depicts a distributed

graPHIGS application running on various hardware configurations which are attached through a central TCP/IP

network. Several S/390 Host systems are shown running instances of the graPHIGS application and Shell, using the

GAM to communicate across an IBM 5088 or 6098 communications controller to network-connected RS/6000 gateway

systems.

158 The graPHIGS Programming Interface: Technical Reference

v The graPHIGS API gateway daemon can communicate with a remote nucleus running locally or to a

remote nucleus running on any user workstation able to be reached via TCP/IP.

v A remote nucleus can communicate with multiple graPHIGS API gateway daemons and with other

graPHIGS API shells.

v A remote nucleus can support multiple graphics adapters and remote X servers.

v Multiple remote nuclei may run in a user workstation.

v One application process can connect to multiple graPHIGS API remote nuclei.

With this many options, some tuning (i.e., configuration management) may be required to provide optimal

performance and/or resource utilization. In this environment, items such as network capacity planning

become very important.

Also, ensure that you have met the hardware and software requirements.

Customizing the graPHIGS API Gateway Daemon

After the hardware and software prerequisites are satisfied, the system administrator should use the smit

5085 command to perform some HIA configuration at the gateway node. If this is a new adapter, you must

add it as an hia and define:

v The link speed

v The number of 5080 addresses

v The 5080 base offset

v The 5080 channel address.

If you have or are going to install the 3270 Host Connection Program 2.1 and 1.3.3 for AIX: Guide and

Reference, you should customize the HIA-attached 3270 sessions at this time as well.

This information defines the range of 5080 addresses that the gateway administers. The 5080 channel

address is an arbitrary three- or four-digit hex number representing the first IBM S/390 device address

assigned to the range. No checking is done on this data, but it is used in assigning connections and is

passed to the user when the connection is granted.

The administrator may also want to customize the TCP/IP port number of the gPgated service in

/etc/services. There is a default assignment of 7999 at the time the graPHIGS API API is installed. See

The gPgated TCP/IP Port Number (RS/6000 only) for more information on the TCP/IP port number. The

procedure for customizing the TCP/IP port number is identical to customizing for the graPHIGS API remote

nucleus. See Problem Determination for gPgated, the graPHIGS API Gateway Daemon for information on

customizing for a graPHIGS API remote nucleus.

Activating the graPHIGS API Gateway Daemon

Once the HIA is configured, the gPgated command may be invoked to start the graPHIGS API gateway

daemon.

For those administrators who wish to have a fixed GAM address to workstation connection bindings, use

the -p option to predefine those connections. Note that a gPhost command must be issued at the user

workstation to allow the daemon to communicate with the remote nucleus. You could include this in a shell

script that is used to start the graPHIGS API remote nucleus. Under some conditions, a not-ready-to-ready

interrupt may be required at the host to invoke a ″startup″ program. The chgPcon command allows you to

do this.

Activating the User Workstation

The graPHIGS API remote nucleus must be running on the user workstation before communication may

be initiated. Use the gPinit command to start a remote nucleus.

Chapter 5. graPHIGS API Host and Workstation Connectivity 159

If you establish the connection profile entry for this workstation/nucleus configuration before the nucleus is

initialized, then you must issue a gPhost command to permit the gateway daemon to transmit data to the

nucleus. If you do not issue the gPhost command, then when the application attempts to open the

connection, the following message appears:

 AFM0208 CONNECTION NOT CURRENTLY PERMITTED FROM THIS HOST TO NUCLEUS ’hostname:0’

Using the graPHIGS API Gateway Daemon

To run a GDDM/graPHIGS API application to a Personal graPHIGS API remote nucleus, ensure that the

following items have been completed:

1. The installation prerequisites need to be met and the configuration complete.

2. The graPHIGS API remote nucleus must be running at the user workstation as explained in Activating

the User Workstation.

3. The graPHIGS API gateway daemon must be running as explained in Activating the graPHIGS API

Gateway Daemon.

4. A runtime connection profile entry which associates an IBM S/390 device address with the target

remote nucleus must be established. Refer to the section on chgPcon.

5. You may have to customize your application environment as explained in Customizing the Application

Environment.

6. Start your GDDM/graPHIGS API application.

If you encounter problems with this procedure, refer to Problem Determination for gPgated, the graPHIGS

API Gateway Daemon.

Customizing the Application Environment

To override application nucleus connection defaults, use the graPHIGS API default facilities as described in

Controlling the Environment with Defaults and Nicknames. An example of a graPHIGS API PROFILE entry

is:

AFMMDFT DEFNUC=(2, ibmagc)

 AFMMNICK TOCONNID=connid,TOWSTYPE=nucwstype

Where ibmagc is the DDNAME of the device, connid is the connection identifier which may be * or others, as

defined in Controlling the Environment with Defaults and Nicknames, and nucwstype is the remote nucleus

workstation type desired, e.g., X or CGM. Other parameters are allowed as desired. For example, you can

use the XNAME PROCOPT (see XNAME (X Default String)) for installation specific information. In the default

case where there are no matches in the .Xdefaults file, use XNAME to set the title information for the

X-window opened for a created workstation. For example:

 PROCOPT=((XNAME,MVS3_YourApplication_YourGRAFaddr))

Note: This example puts the string: MVS3_Your application_YourGRAFaddr in the X-window title bar:

 Table 102. Notice to 6095 Users

6095 Users

If you are using GDDM/graPHIGS API on the 6095, at this time there are known limitations to function or functional

differences that you may encounter. See Workstation Description Tables for these limitations.

Memory Configuration and Application Performance

For each connection where a gateway daemon runs, a certain amount of real memory and virtual memory

(paging space) is required. A minimum of 128 Kb of real memory and 1024 Kb of paging space should be

allocated for each connection. Therefore, a machine with a minimum of 16 Mb of real memory and 32 Mb

of paging space is able to support eight connections. In order to support more than eight connections,

more paging space is needed and more real memory is needed for optimum performance.

160 The graPHIGS Programming Interface: Technical Reference

There is an option to allocate more memory to each connection to help buffer outbound data. Depending

on the application and IBM S/390 loading, allocating more memory can have a profound effect on elapsed

time for large model downloads. This buffer can be considered a speed matching device, or a balloon in

the pipeline that allows data to be transmitted to the graPHIGS API remote nucleus as fast as can be

accepted. The system administrator may want to use this option as a tuning parameter and trade off

reduced model download time against increased real memory and virtual memory requirements.

The lsgPcon command enables the administrator to monitor the progress of data flow through the system.

The lsgPcon -S command returns data that is useful in the tuning process. In particular, if paging is

invoked on buffers exceeded a large number of times, the administrator might want to use the -b option to

increase the buffer size.

The gPgated TCP/IP Port Number (RS/6000 only)

gPgated, chgPcon, and lsgPcon must use the same TCP/IP port number when communicating across a

TCP/IP network.

The graPHIGS API gateway daemon needs to know on which TCP/IP port number to ″listen″ for

information from chgPcon and lsgPcon commands. Likewise, these commands must know on which

TCP/IP port number to send information. The gPgated TCP/IP port number is determined when the

graPHIGS API gateway daemon is started by an inquiry to the services database (most commonly

represented by the system file /etc/services) for the port number of the gPgated service. If any command

fails to find the gPgated service in the services database, a default base port of 7999 is used.

Notes:

v The graPHIGS API gateway daemon, gPgated, uses the services database on the same host on

which it is started. The chgPcon and lsgPcon commands use the services database on the host

on which they are issued. Therefore, it is mandatory that the port number, as defined in the

services database on each host, is the same for all hosts on which the gPgated, chgPcon, and

lsgPcon commands are to be issued.

v The use of a hostname alias to direct routing over redundant networks may result in refused

connections because the graPHIGS API remote nucleus and gPgated authorize access by

hostname. When the gPhost or the chgPcon command is issued, the target hostname must

match the hostname configured on the target host.

The SOCKETS Connection Method

Overview

The GDDM graPHIGS API provides SOCKETS communication so that an application executing in a VM or

MVS environment can connect to a remote graPHIGS nucleus on a supported workstation, such as a

RS/6000.

Note:

v Although the SOCKETS connection method is easier to use than the GAM connection method

and provides comparable or better performance, it often consumes more mainframe CPU

resources for the same application.

v We do not recommend using the SOCKETS connection method on MVS for production

purposes. The implementation of TCP/IP Version 2 Release 2 on current MVS systems forces

the address space of any application using the SOCKETS connection method to become

non-swappable. are used then system wide performance will be negatively impacted. The impact

will depend on the sizes of the applications and the amount of system memory. This problem

does not exist in the VM environment. Furthermore, on current MVS systems, i.e. MVS Versions

2, 3, and 4, use of TCP/IP connections with Version 2 of TCP/IP forces the application address

space to become non-swappable. are used then system wide performance is negatively

Chapter 5. graPHIGS API Host and Workstation Connectivity 161

impacted. For this reason, customers are not encouraged to use the SOCKETS connection

method on MVS for production purposes. This is not a problem for applications run in the VM

environment.

Prerequisites

The SOCKETS connection method for the graPHIGS API requires that the IBM TCP/IP licensed program

product be installed and operational on your CPU. The required versions are:

v On VM, TCP/IP Version 2 Release 1, or higher, program number 5735-FAL

v On MVS, TCP/IP Version 2 Release 2, or higher, program number 5735-HAL

If you want to take advantage of the host name resolution capability, then you need the run time libraries

for the IBM C/370 program product. The required version is:

v C/370 Version 2 Release 1, or higher, program number 5688-039

Host name resolution is the ability to specify a host name instead of an IP address when using the

Connect to Nucleus (GPCNC) subroutine or specifying the DEFNUC or TONUC options in either the

External Defaults File (EDF) or the Application Default Interface Block (ADIB).

Specifying the Target Nucleus

To connect to a remote graPHIGS nucleus, an application must supply a nucleus connection specification

using the Connect to Nucleus (GPCNC) subroutine specifying the DEFNUC or TONUC options in either

the External Defaults File (EDF) or the Application Default Interface Block (ADIB).

For information about GPCNC, see GPCNC - Connect Nucleus. For more information about overriding

application nucleus connection defaults, see Controlling the Environment with Defaults and Nicknames.

The specification is defined as <hostname>:<nucleus_id>. There are two ways this can be done,

depending on whether you have host name resolution enabled. Generally, enabling host name resolution

makes it easier to use. For example, a host called ″host1″, with internet address ″129.40.17.9″ is running

a remote graPHIGS nucleus with id ″0″.

If host name resolution is enabled, you can use the following specifications:

AFMMDFT DEFNUC=(3,host1:0)

AFMMNICK TOCONNID=host1:0

If host name resolution is NOT enabled, you need to use the following specifications:

AFMMDFT DEFNUC=(3,129.40.17.9:0)

AFMMNICK TOCONNID=129.40.17.9:0

Application Customization When Using Host Name Resolution on MVS

The following libraries need to be concatenated to the STEPLIB of the job which runs the application to

enable host name resolution:

// DD DSN=EDC.SEDCLINK,DISP=SHR

// DD DSN=PLI.SIBMLINK,DISP=SHR

These lines should be modified to specify the actual names of your IBM C/370 SEDCLINK and SIBMLINK

datasets. Further information on link-editing and running C/370 for MVS applications can be found in the

IBM C/370: Programming Guide, SC09-1384.

Application Customization When Using Host Name Resolution on VM

The AFMZRES MODULE, which was generated by your system programmer as part of the GDDM

graPHIGS installation process, must be available (on an accessed disk) for your application while it is

executing.

162 The graPHIGS Programming Interface: Technical Reference

Also, the following libraries need to be GLOBALed when the application is executed (in addition to the

graPHIGS API run-time libraries) to enable host name resolution:

GLOBAL TXTLIB COMMTXT IBMLIB EDCBASE

GLOBAL LOADLIB EDCLINK

Further information on link-editing and running C/370 for VM applications may be found in the IBM C/370:

Programming Guide, SC09-1384.

Note: You may be required to use the gPhost command on the target workstation to allow the target

nucleus to receive data from the application process.

Run-Time Errors

If an error related directly to the TCP/IP SOCKETS support for the graPHIGS API occurs, the following

error will be reported by the graPHIGS API:

AFM0593 COMMUNICATION ERROR: MAJOR 7, MINOR xxx

The MINOR code will generally equate to a TCP/IP ″errno″ value, as defined in the TCPERRNO file

shipped with the TCP/IP program products.

Error codes which are not defined in the TCPERRNO file are generally configuration problems, and should

be report to system support personnel, or IBM Support personnel.

Configuration Details

See the GDDM graPHIGS program directory for more information on the customization and configuration

that must be performed by your system programmer in order to use the SOCKETS connection method.

graPHIGS/GAM Direct Connection

Overview

The graPHIGS/GAM direct connection of the graPHIGS nucleus to 6098 with FDDI feature enables a host

graPHIGS API application using GAM to access a workstation and graPHIGS API workstations managed

by it. The direct connection function provides a high bandwidth, low-cost connection from the

GDDM/graPHIGS API shell to a remote nucleus.

The following figure is a high-level diagram that represents the components of this configuration using a

graPHIGS/GAM direct connection:

Chapter 5. graPHIGS API Host and Workstation Connectivity 163

The configuration is flexible. A few of the options are:

v Multiple 6098s with FDDI feature can exist on a LAN.

v Multiple 6098s with FDDI feature can run to a RS/6000.

v A remote nucleus can communicate with multiple 6098s with FDDI feature and with other graPHIGS API

shells.

v A remote nucleus can support multiple graphics adapters and remote X servers.

v Multiple remote nuclei may run in a user workstation.

v One application process can connect to multiple graPHIGS API remote nuclei.

With this many options, some tuning (i.e., configuration management) may be required to provide optimal

performance and/or resource utilization. In this environment, items such as network capacity planning

become very important.

Customizing the 6098 with FDDI Feature

After the hardware and software prerequisites are satisfied, the system administrator should customize the

6098 with FDDI. Specifically, for users of the mkgPcon command, the system administrator may set up a

6098 configuration parameter called the environment descriptor to help in associating an IBM S/390 device

address and a 6098 port number. See mkgPcon and ls6098 for more information on the environment

descriptor.

Activating the User Workstation

The graPHIGS API remote nucleus must be running on the user workstation before communication may

be initiated. Use the gPinit command to start a remote nucleus.

Using the graPHIGS/GAM Direct Connection

To run a GDDM/graPHIGS API application to a Personal graPHIGS API remote nucleus, ensure that the

following items have been completed:

1. The installation prerequisites need to be met and the configuration complete.

Figure 3. graPHIGS/GAM Direct Connection. This diagram depicts a distributed graPHIGS application in which the

S/390 Host systems are using the GAM to communicate to network-connected 6098 systems with the FDDI feature.

164 The graPHIGS Programming Interface: Technical Reference

2. The graPHIGS API remote nucleus must be running at the user workstation as explained in Activating

the User Workstation.

3. A connection which associates an IBM S/390 device address with the target remote nucleus must be

established. Refer to the section on mkgPcon.

4. You may have to customize your application environment as explained in Customizing the Application

Environment.

5. Start your GDDM/graPHIGS API application.

If you encounter problems with this procedure, see Problem Determination for gPgated, the graPHIGS API

Gateway Daemon for more information.

Customizing the Application Environment

To override application nucleus connection defaults, use the graPHIGS API default facilities as described in

Controlling the Environment with Defaults and Nicknames. An example of a graPHIGS API PROFILE entry

is:

AFMMDFT DEFNUC=(2, ibmagc)

 AFMMNICK TOCONNID=connid,TOWSTYPE=nucwstype

Where ibmagc is the DDNAME of the device, connid is the connection identifier which may be * or others, as

defined in Controlling the Environment with Defaults and Nicknames, and nucwstype is the remote nucleus

workstation type desired, e.g., X or CGM. Other parameters are allowed as desired. For example, you can

use the XNAME PROCOPT in Controlling the Environment with Defaults and Nicknames. (See XNAME (X

Default String) for installation specific information).

In the default case where there are no matches in the .Xdefaults file, use XNAME to set the title information

for the X-window opened for a created workstation. For example:

 PROCOPT=((XNAME,MVS3_YourApplication_YourGRAFaddr))

Note: This example puts the string: MVS3_Your application_YourGRAFaddr in the X-window title bar.

 Table 103. Notice to 6095 Users

6095 Users

If you are using GDDM/graPHIGS API on the 6095, at this time there are known limitations to function or functional

differences that you may encounter. See Workstation Description Tables for these limitations.

chgPcon Command

Purpose

Add/change/delete a runtime connection profile entry for a graPHIGS API gateway daemon.

Syntax

 -- -n:0 ------ -------- ----------------

 | | | | | |

chgPcon ---| |---| |---| |-->

 -- -n:nucid -- -- -d -- --- -adevaddr --

 ------------------ --------------

 | | | |

 -->--| |---| |--|

 -- -ggatewaynum -- -- hostname --

Chapter 5. graPHIGS API Host and Workstation Connectivity 165

Description

This command modifies runtime connection profile entries for the graPHIGS API gateway daemon running

on the specified host. If there is an entry for the specified IBM S/390 device address in the runtime

connection profile, the entry is changed or deleted. Otherwise, the entry is added.

The command may be used to add or modify an entry such that a connection to an IBM S/390 device

address allocated to the gateway may connect to the specified graPHIGS API remote nucleus. The

nucleus must reside on the host where the command is issued. At the time the runtime connection profile

entry is added, the host on which the graPHIGS API gateway daemon is running is granted access to the

local nucleus, so that the gPhost command need not be used.

The command may also be used to delete a runtime connection profile entry.

If chgPcon is successful, the following message appears at the terminal:

 gPgated: GAM address devaddr allocated to hostname:nucid

Where devaddr is the IBM S/390 device address used by the GDDM/graPHIGS API application, hostname

is the host name of the local workstation and nucid is the nucleus identifier of the remote graPHIGS API

nucleus to which the connection will be established.

If chgPcon is unsuccessful, one of the following messages appear at the terminal:

 AFM0604 NUCLEUS n1 NOT STARTED OR NOT RESPONDING

 AFM0616 NO DEVICE ADDRESSES AVAILABLE

 AFM0617 DEVICE ADDRESS devaddr ALREADY ALLOCATED OR UNAVAILABLE

 AFM0593 COMMUNICATION ERROR: MAJOR 7 MINOR 73

 AFM1101 NOT ENOUGH STORAGE TO PERFORM REQUESTED FUNCTION

If you are having problems running the application, refer to Problem Determination for gPgated, the

graPHIGS API Gateway Daemon.

Flags

 -g:gatewaynum Specifies the numeric suffix to be appended to the HIA device name that is opened

and managed. The default is zero, for example, /dev/hia0.

-n:nucid Specifies the nucleus identifier of the graPHIGS API remote nucleus. The default is

zero.

-d Deletes the runtime connection profile entry which defines a connection between the

specified remote nucleus and the IBM S/390 device address. A new runtime

connection profile entry for the IBM S/390 device address may then be added. If the

-d flag is not specified then an entry is changed or added instead of deleted.

When the -d flag is specified but the -a flag is not specified, then the connection that

is dropped is the first one encountered that conforms to the specified parameters. If

there are multiple connections that match the specified parameters, then the user

should consider using the -a flag unless the specifics of the connection are

unimportant.

-adevaddr Requests that a specific GAM address devaddr be reserved or dropped according to

the flags specified. If hostname:nucid already has allocated the address and the -d

option is not specified, then a reset function is performed. This reset causes a

not-ready-to-ready interrupt to be received at the IBM S/390 and all internal state

information to be reset for that connection. The following message occurs:

gPgated: GAM address devaddr reset for hostname: nucid

hostname Specifies the name of the host where the graPHIGS API gateway daemon is running.

If a hostname is not specified, the default is the local host.

166 The graPHIGS Programming Interface: Technical Reference

Examples

 1. To request a connection from a graPHIGS API gateway daemon running on the local host to the

default nucleus (which has an identification number of zero):

 chgPcon

 2. To request a connection from a graPHIGS API gateway daemon running on the local host to the

graPHIGS API remote nucleus which has an identification number of two:

 chgPcon -n:2

 3. To request a connection from a graPHIGS API gateway daemon running on the host gatenode to the

default nucleus (which has an identification number of zero):

 chgPcon gatenode

 4. To request a connection from a graPHIGS API gateway daemon running on the host gatenode to the

remote nucleus which has an identification number of two:

 chgPcon -n:2 gatenode

 5. To request a connection on a specific IBM S/390 device address from a graPHIGS API gateway

daemon running on the host gatenode to the remote nucleus which has an identification number of

two:

 chgPcon -a13cb -n:2 gatenode

 6. To request a connection on a specific GAM address from a graPHIGS API gateway daemon that is

managing the device /dev/hia3 running on the host gatenode, to the remote nucleus which has an

identification number of two:

 chgPcon -a13cb -n:2 -g3 gatenode

 7. To drop a connection between the default nucleus and the graPHIGS API gateway daemon running

on the host, gatenode:

 chgPcon -d gatenode

 8. To drop a connection between the remote nucleus which has an identification number of two and the

graPHIGS API gateway daemon running on the host gatenode:

 chgPcon -d -n:2 gatenode

 9. To drop a connection between the nucleus which has an identification number of two, and the

gateway daemon that is managing the device /dev/hia1 running on the host, gatenode:

chgPcon -d -n:2 -g1 gatenode

10. To drop a connection between the default nucleus and a graPHIGS API gateway daemon running on

the local host:

 chgPcon -d

11. To drop a connection on a specific IBM S/390 address between the default nucleus and a graPHIGS

API gateway daemon running on the local host:

 chgPcon -d -a13cb

Files

 /usr/bin/chgPcon

Related Information

The gPgated command, lsgPcon command, gPhost command.

Chapter 5. graPHIGS API Host and Workstation Connectivity 167

gPgated Command

Purpose

Start a graPHIGS API gateway daemon to allow a GDDM/graPHIGS API shell to communicate with

Personal graPHIGS API remote nuclei.

Syntax

 ------------------ ------------------ --------

 | | | | | |

gPgated ---| |---| |---| |-->

 -- -ftrfilename -- -- -pprfilename -- -- -w --

 ------------------ ------------------

 | | | |

 -->--| |---| |--|

 -- -ggatewaynum -- -- -bbuffersize --

OR

 | |

gPgated shutdown ---| |--|

 -- -ggatewaynum --

Description

The gPgated command starts a graPHIGS API gateway daemon. This daemon allows a GDDM/graPHIGS

API application, using a 5088 or 6098 communications control unit and the GAM connection method, to

communicate with Personal graPHIGS API remote nuclei. The daemon process runs on a RS/6000 that

has a 5080 Host Interface Adapter (HIA) installed and configured with 5080-type devices enabled. One

IBM S/390 device address is required to access each connection to a remote nucleus. Each graPHIGS

API gateway daemon can support up to sixteen concurrent connections.

The graPHIGS API gateway daemon is initialized with the specified options, which may assign some

connection profile entries. The daemon is then ready to accept changes to the runtime connection profile

via the chgPcon command or configuration inquiries via the lsgPcon command.

The runtime connection profile is a table of entries containing the following information:

v IBM S/390 device address for the connection

v Hostname and nucleus identifier of the graPHIGS API remote nucleus that receives the connection

v Connection state information.

When an entry exists in the runtime connection profile, whether it has been added due to the processing

of a chgPcon command, or was defined in the initial configuration file specified by the -p option, the IBM

S/390 device address state associated with that entry makes a not-ready-to-ready transition, i.e. comes

online. When execution of the chgPcon command causes an entry to be deleted from the runtime

connection profile, the IBM S/390 device address state associated with that entry is set to not-ready, or

offline. If an entry is deleted while an application’s device is OPEN, then an asynchronous error is generated

before the state changes to not-ready to allow the application to terminate.

The runtime connection profile information is recorded in a ″warmstart″ data file. This data file may be

used in the event of a system failure to recover connection profile information. For details, see the -w

option described below.

Once the graPHIGS API gateway daemon is running and a runtime connection profile entry is established,

a GDDM/graPHIGS API application may attempt to connect to a graPHIGS API remote nucleus by using

the GAM connection method.

168 The graPHIGS Programming Interface: Technical Reference

If gPgated is successful, a series of messages such as the following appear in the transaction file for each

configuration file entry:

 gPgated: Device address

devaddr allocated to

hostname:nucid

Where devaddr is an address in the range defined in the HIA configuration, using the smit 5085

command, and hostname:nucid is the hostname and nucleus identifier of the target graPHIGS API remote

nucleus.

If the -p option is not specified, no messages appear.

If gPgated is unsuccessful, one of the following messages may appear at the terminal:

 AFM1101 NOT ENOUGH STORAGE TO PERFORM REQUESTED FUNCTION

 AFM1203 FILE SERVICE open ERROR RETURN CODE = 13 ON FILE xxxxx

 AFM1107 FILE /usr/profile NOT FOUND

 gPgated: Illegal option option

 gPgated already started

In these cases, the graPHIGS API gateway daemon terminates.

gPgated is intended to run as a daemon which provides service to users on the network continually. In the

event that a reconfiguration needs to take place, or gPgated needs to be stopped, the gPgated

shutdown command option causes it to gracefully exit. You must use either root privileges or the same

userid that initiated gPgated to run this shutdown command, otherwise, the command is unsuccessful and

the following error message occurs:

 AFM1201 SYSTEM SERVICE shmct1 ERROR RETURN CODE = 1

Note: If the gateway daemon terminates or is abnormally ended, you should use the gPgated shutdown

command to perform the cleanup that normally occurs upon exit. This ensures normal startup when

you next use the gateway daemon.

If you are having problems starting a gateway daemon, refer to Problem Determination for gPgated, the

graPHIGS API Gateway Daemon.

Flags

 -ftrfilename Specifies the filename of the gateway transaction file. This file records all transactions

processed by gPgated. It lists the time and date of each event, the requesting host

and nucleus identifier, and the action performed. The default is standard out. Entries

may appear as follows:

// Tue May 21 10:23:31 1991

 gPgated: GAM address e63 allocated to :0

//

Once initialization is completed, the -ftrfilename flag also causes gPgated to run as a

background process.

-ggatewaynum Specifies the numeric suffix to be appended to the HIA device name that is opened

and managed. The default is zero, for example, /dev/hia0

Chapter 5. graPHIGS API Host and Workstation Connectivity 169

-pprfilename Specifies the filename of the initial configuration file. This file allows connections to be

predefined by a system administrator. The file has the following format:

v Entries are in the format hexaddr hostname:nucid [-bbuffersize]

where hexaddr is the three or four digit hex GAM address to be assigned to the

connection, hostname is the internet name of the target host, nucid is the

graPHIGS API remote nucleus identifier to connect at the node hostname, and the

-b option applies to each entry allowing the system administrator to tailor buffering

to individual applications for specific users. See -bbuffersize for the definition of

the -b option.

v Comments are allowed and begin with the # symbol

v Blank lines are allowed.

Some sample file entries:

abc5 rover:0 #joes current workstation

abc6 rover:0 #joes current workstation

#This line is a comment.

abc7 :0 #administrators session on local node

abc8 stranger:255 #interesting setup

abc9 cad:0 -b1024 #1 Meg buffer on this connection

abca cad:1 -b0 #But no buffering allowed here

For each target remote nucleus in the file, the graPHIGS API gateway daemon

attempts to issue a gPhost command to allow itself access to that nucleus. If the

target remote nucleus is not running, the user needs to issue the gPhost command

manually after the remote nucleus is started. This option is mutually exclusive with

the -w option.

-w Specifies that the initial configuration file saved during the last execution of gPgated

be used to establish new connections, i.e. a″warmstart″ screen. It retrieves this data

from the file /tmp/.gP/gPgated.warmstart.data, which is the file that gPgated uses

to record the current runtime connection profile.

This option is mutually exclusive with the -p option.

-bbuffersize Specifies the size of the internal buffer pool to be used for each connection. This

buffer is used when the graPHIGS API remote nucleus consumes data more slowly

than the IBM S/390 produces it. buffersize is a positive decimal number indicating the

number of 1024 byte blocks to use before invocation of the pacing mechanism. The

default is 256 1024-byte blocks per connection.

Note: You may need to adjust the paging space when using large buffers.

shutdown Requests that the gateway daemon be gracefully terminated. The session connection

profile is saved to be used for a later ″warmstart″ and applications are notified that

open connections are being broken as required. This option is mutually exclusive with

all options other than the -g option.

Examples

1. To start a graPHIGS API gateway daemon:

 gPgated

2. To stop a graPHIGS API gateway daemon:

 gPgated shutdown

3. To start a graPHIGS API gateway daemon and assign connections as predefined in the file myconfig:

 gPgated -pmyconfig

4. To start a graPHIGS API gateway daemon and assign connections as predefined in the file

myconnections and record the transactions in the file mylog:

 gPgated -pmyconnections -fmylog

170 The graPHIGS Programming Interface: Technical Reference

5. To restart a graPHIGS API gateway daemon after a system crash and record the transactions in mylog:

 gPgated -w -fmylog

6. To restart a graPHIGS API gateway daemon after a system crash and use a buffer size of 65536:

 gPgated -w -b64

7. To start a graPHIGS API gateway daemon and use the adapter configured as /dev/hia4:

 gPgated -g4

8. To stop the graPHIGS API gateway daemon managing the adapter configured as /dev/hia4:

 gPgated shutdown -g4

Files

 /usr/bin/gPgated

/usr/lpp/graPHIGS/bin/gPgated

/tmp/.gP/gPgated.warmstart.data0

/tmp/.gP/gPgated.warmstart.data1

/tmp/.gP/gPgated.warmstart.data2

/tmp/.gP/gPgated.warmstart.data3

/tmp/.gP/gPgated.warmstart.data4

/tmp/.gP/gPgated.warmstart.data5

/tmp/.gP/gPgated.warmstart.data0.bak

/tmp/.gP/gPgated.warmstart.data1.bak

/tmp/.gP/gPgated.warmstart.data2.bak

/tmp/.gP/gPgated.warmstart.data3.bak

/tmp/.gP/gPgated.warmstart.data4.bak

/tmp/.gP/gPgated.warmstart.data5.bak

Related Information

The chgPcon command, lsgPcon command, gPhost command.

ls6098 Command

Purpose

Inquire connection information for the 6098 with FDDI feature.

Syntax

ls6098 hostname

Description

This command inquires connection information of a 6098 with FDDI feature called hostname.

The following is an example of input for making an inquiry about connection information for a 6098 with

FDDI feature:

ls6098 w20

where w20 is the hostname.

If ls6098 is successful, messages like the following appear at the terminal:

IBM 6098 named ’w20’ returns descriptor ’KGNVMP: LAB: CHPID 19: w20’

Application Name Starting Port,Number of Ports,State

FPGP TESTING USAGE 0008 0008 NOTBUSY

Chapter 5. graPHIGS API Host and Workstation Connectivity 171

where KGNVMP: LAB: CHPID 19: w20 is the environment descriptor or location of the 6098 with FDDI

feature.

If ls6098 is unsuccessful, one of the following messages appear at the terminal:

AFM0593 COMMUNICATION ERROR: MAJOR 7 MINOR 73

AFM0640 UNKNOWN HOST ’w20’

AFM0641 HOST ’w20’ NOT RESPONDING

AFM0642 HOST ’w20’ IS NOT AN IBM 6098 W/FDDI FEATURE

AFM1201 SYSTEM SERVICE read ERROR RETURN CODE = 73

Flags

 hostname Specifies the hostname or IP address of the 6098 with FDDI feature to which the inquiry will

be sent.

Examples

1. To inquire from the 6098 with FDDI feature called hostname, the connection information about the local

host:

 ls6098 hostname

Files

 /usr/bin/ls6098

Related Information

The mkgPcon command

lsgPcon Command

Purpose

Inquire runtime connection profile information from a graPHIGS API gateway daemon.

Syntax

 -- -q --- ------------------ --------------

 | | | | | |

lsgPcon ---|one of:|--| |--| |--|

 | -q | -- -ggatewaynum -- -- hostname --

 | -Q |

 | -s |

 | -S |

 | -r |

 | -R |

Description

This command inquires runtime connection profile information from a graPHIGS API gateway daemon

running on the specified host.

If lsgPcon is successful, one or more of the following messages appear at the terminal:

devaddr hostname:nucid stateinfo

172 The graPHIGS Programming Interface: Technical Reference

Where devaddr is the IBM S/390 device address used by the GDDM/graPHIGS API application, and

hostname:nucid is the hostname and nucleus identifier of the host where the graPHIGS API gateway

daemon is running. stateinfo may be one of the following:

v DEFINED

There exists a runtime connection profile entry which defines the connection between the IBM S/390

device address and the graPHIGS API remote nucleus.

v OPEN

The runtime connection profile entry is defined and there is an active connection between the IBM

S/390 device address and the graPHIGS API remote nucleus.

If lsgPcon is unsuccessful, one of the following messages appear at the terminal:

 AFM0604 NUCLEUS n1 NOT STARTED OR NOT RESPONDING

 AFM0593 COMMUNICATION ERROR: MAJOR 7 MINOR 73

If you are having problems running the application, refer to Problem Determination for gPgated, the

graPHIGS API Gateway Daemon.

Flags

 hostname Specifies the hostname of the gateway to which the inquiry will be sent.

-g:gatewaynum Specifies the numeric suffix to be appended to the HIA device name that is opened

and managed. The default is zero, for example, /dev/hia0.

-q Requests the return of the status of those connections allocated to the requesters

node at the specified gateway. This is the default option. This option is mutually

exclusive with all other options.

-Q Requests the return of the status of all connections at the specified gateway. The

default is for the return of only those connections allocated to the requesters node at

the specified gateway. This option is mutually exclusive with all other options.

-s Requests the return of the status of those connections allocated to the requesters

node at the host where the specified gateway daemon is running (as with the -q

option). In addition, requests the return of the I/O statistics associated with those

connections. This option is mutually exclusive with all other options.

-S Requests the return of the status of all connections at the host where the specified

gateway daemon is running (as with the -Q option). In addition, requests the return of

the I/O statistics associated with those connections. This option is mutually exclusive

with all other options.

-r Requests the reset of the I/O statistics of those connections allocated to the

requesters node at the host where the specified gateway daemon is running. This

option is mutually exclusive with all other options.

-R Requests the reset of I/O statistics of all connections at the host where the specified

gateway daemon is running. This option is mutually exclusive with all other options.

Examples

1. To inquire, from the graPHIGS API gateway daemon running on the local host, the runtime connection

profile information about the local host:

 lsgPcon

2. To inquire the runtime connection profile information for all connections from a gateway daemon

running on the host, gatenode:

 lsgPcon -Q gatenode

3. To inquire, from the graPHIGS API gateway daemon running on the local host, the runtime connection

profile information and statistics for the local host:

 lsgPcon -s

4. To reset the statistics for the gateway daemon running on the local host:

Chapter 5. graPHIGS API Host and Workstation Connectivity 173

lsgPcon -r

5. To inquire the runtime connection profile information and statistics for all connections managed by a

gateway daemon running on the host called gatenode:

 lsgPcon -S gatenode

6. To inquire the runtime connection profile information and statistics for all connections to the gateway

daemon that is managing the device /dev/hia/ running on the a host called gatenode:

 lsgPcon -S -g1 gatenode

7. To reset the statistics for all connections managed by a gateway daemon running on the host called

gatenode:

 lsgPcon -R gatenode

Files

 /usr/bin/lsgPcon

Related Information

The gPgated command, chgPcon command.

mkgPcon Command

Purpose

Make a connection to or break a connection from a 6098 with FDDI feature.

Syntax

 -- -n:0 ----- ------------------------

 | | -------- |one of: |

mkgPcon ---| |---| |---| -a application_name |--- hostname

 ---n:nucid -- -- -d -- | -o offset |

Description

This command makes a connection to or breaks a connection from the 6098 with FDDI feature and

provides verification and identification of the requested action.

Making a connection with the 6098 with FDDI feature causes an IBM S/390 device address to be allocated

to the specified graPHIGS API remote nucleus. The nucleus must reside on the workstation where the

command is issued and be running at the time the mkgPcon command is used. At the time the

connection is made, the 6098 with FDDI feature is granted access to the local nucleus, so that the gPhost

command need not be used.

This command may also be used to break a single connection. The gPterm command may be used to

break all connections to the nucleus.

The IBM S/390 device address that is assigned when a connection is made is a function of:

1. The channel or channel path to which the 6098 is attached

2. The control unit offset that is configured at the 6098

3. The 6098 port selected

174 The graPHIGS Programming Interface: Technical Reference

The first two are controlled by your system programmer and planner. The last is a function of the

parameters used on the mkgPcon command and 6098 port availability. There is a one-to-one correlation

between 6098 port and channel address. There are up to 256 ports (device addresses) available, and they

are referred to by their offset from a configured base port. Thus, the value range of port offsets is 0 to 255

(or 0x0 to 0xff).

The 6098 provides two mechanisms for port assignments:

v Explicit port assignment - invoked by using the -o parameter

v Get next available port - invoked by using the -a parameter or no parameters

When you use the mkgPcon command, the hostname parameter determines the 6098 and thus the

channel and control unit offset. To determine the S/390 device address, you must add the offset returned

by the mkgPcon command to the data provided to you by your system programmer on the channel and

control unit offset. There is a 6098 configuration parameter, known as the channel path id, which is a text

string that may be set by your administrator to provide that information. It is recommended that the

channel path id data be in the form:

CPUname channel_path other_useful_data <base_hex_address>

If it is, then mkgPcon parses base_hex_address, performs the addition, and returns the IBM S/390 device

address desired. So the manual operation described above is only required if the administrator has not

customized the 6098 in the prescribed manner.

The following is an example of input for making a connection:

mkgPcon -a’FPGP TESTING USAGE’ w20

If mkgPcon is successful, the following message appears at the terminal:

mkgPcon: Attempting connection on port 8

Then one of the following messages appears:

EITHER

mkgPcon: Host ’w20’ accepted connection on port 8

OR

mkgPcon: Host ’w20’ accepted connection on device address 19A2

If mkgPcon is unsuccessful, one of the following messages appear at the terminal:

AFM0604 NUCLEUS n1 NOT STARTED OR NOT RESPONDING

AFM0593 COMMUNICATION ERROR: MAJOR 7 MINOR 73

AFM0640 UNKNOWN HOST ’w20’

AFM0641 HOST ’w20’ NOT RESPONDING

AFM0642 HOST ’w20’ IS NOT AN IBM 6098 W/FDDI FEATURE

AFM0643 HOST ’w20’ HAS NO FREE ’FPGP TESTING USAGE’ PORTS

AFM0644 HOST ’w20’ DID NOT ACCEPT THE CONNECTION AS SPECIFIED

AFM0646 HOST ’w20’ HAS NO CONNECTION AS SPECIFIED TO BE DELETED

AFM0645 RPC FUNCTION get base port FAILED FOR APPLICATION ’TEST123’ ON PORT 36

AFM1201 SYSTEM SERVICE read ERROR RETURN CODE = 73

If you are having problems running the application, refer to Problem Determination for gPgated, the

graPHIGS API Gateway Daemon.

Flags

 -n:nucid Specifies the nucleus identifier of the graPHIGS API remote nucleus. The default is

zero.

Chapter 5. graPHIGS API Host and Workstation Connectivity 175

-d Deletes the connection between the specified remote nucleus and the IBM S/390

device address. A new connection for the IBM S/390 device address may then be

added.

-a Defines the port number selection by application name. The application name is an

arbitrary string of up to 31 characters. When using blank characters within an

application name, enclose the application name in quotes, for example:

’FPGP TESTING USAGE’

-o Defines the port number selection by offset from base. This parameter may be

entered in any of three forms: octal, hexidecimal, or decimal. Using the standard

notation:

v A leading 0 indicates an octal number (e.g. 077)

v A leading 0x or 0X indicates a hexadecimal number (e.g. 0xA0)

v All other entries will be assumed to be decimal

hostname A required parameter that specifies the name or IP address of the 6098 with FDDI

feature.

Examples

1. To request a connection from a 6098 with FDDI feature called hostname to the default nucleus (which

has an identification number of zero):

 mkgPcon hostname

2. To request a connection from a 6098 with FDDI feature called hostname to the remote nucleus which

has an identification number of two:

 mkgPcon -n:2 hostname

3. To request a connection on a specific GAM address from a 6098 with FDDI feature called hostname to

the remote nucleus which has an identification number of two:

 mkgPcon -o0xfe -n:2 hostname

4. To request a connection from a 6098 with FDDI feature called hostname to the default nucleus (which

has an identification number of 0) using the application name testing123 as a port selector:

 mkgPcon -atesting123 hostname

5. To drop a connection between the default nucleus and the 6098 with FDDI feature called hostname:

 mkgPcon -d hostname

6. To drop a connection between the remote nucleus which has an identification number of two and the

6098 with FDDI feature called hostname:

 mkgPcon -d -n:2 hostname

7. To drop a connection on a specific IBM S/390 address between the default nucleus and a 6098 with

FDDI feature called hostname:

 mkgPcon -d -o0xfe hostname

8. To drop a connection from a 6098 with FDDI feature called hostname to the default nucleus (which has

an identification number of 0) using the application name testing123 as a port selector:

 mkgPcon -d -atesting123 hostname

Files

 /usr/bin/mkgPcon

Related Information

The ls6098 command

The graPHIGS API Nucleus

176 The graPHIGS Programming Interface: Technical Reference

Chapter 6. Enabling User Exits for Conferencing

The graPHIGS API provides a set of user exits through which your application display data can be

distributed and managed by a conference utility. Conference utilities allow multiple users on separate

workstations to participate in a single graPHIGS API application. This is very useful when a team of

designers, for example, who work in different locations need to discuss changes to a model they are all

using. New users of a graPHIGS API application may also benefit when getting assistance from the help

desk through a conference utility.

The graPHIGS API can accommodate a conference utility in the following way. The graPHIGS API

application runs on a master workstation while a conference utility controller communicates with the

participating workstations. This conference controller must be given information about all participating

workstations before the application is started. One way to supply this information is through a conference

session manager connected to a user interface. The graPHIGS API supports message facilities that allow

this information to flow between the controller and the session manager. The session manager, conference

controller, and the application must all run on the same node as the master workstation. See the following

figure:

Figure 4. The graPHIGS API Running with a Typical Conference Utility. This diagram shows the master workstation,

with its application, conference controller and session manager, communicating with several participating workstations.

© Copyright IBM Corp. 1994, 2002 177

As the application renders data to the master workstation, the conference controller renders the same data

to each participating workstation, allowing all participants to view the graPHIGS API application. It can also

allow control to be passed from the master workstation to any one of the participating workstations for

interaction with the application.

In order to render data to the participating workstations, the conference controller must intercept each

graPHIGS API function issued by the application. It must then determine which functions to issue to the

participating workstations as well as to the master workstation, and which to simply pass along to the

master workstation. Further decisions must be made regarding the function parameters: if the controller

issues the function to the participating workstations, it may use the same parameters set by the application

or it may modify them before issuing them.

The conference controller must define and allocate a separate application anchor block (AAB) for each

participating workstation. In this way, the conference controller keeps track of which workstation session

has input focus. The conference controller should not allow any session to remain in a state awaiting input,

such as a response to a Request Choice (GPRQCH) subroutine. This prevents input focus from being

switched among master and participating workstation sessions.

The following sequence of events summarizes the initialization and exchange of data that might be used

for a graPHIGS API conference utility.

 1. The user starts the conference session manager on the master workstation.

 2. The user inputs information about participating workstations to the session manager.

 3. The user starts the application on the master workstation.

 4. The user starts the conference controller (see Starting and Stopping the Conference Utility

Controller).

 5. The conference controller issues the Inquire Nucleus Specification (GPQNS) subroutine to determine

the session manager hostname.

 6. The conference controller issues the Inquire Workstation Type and Options (GPQWTO) subroutine to

determine the workstation type and options for the master workstation.

 7. The conference controller uses the Create Workstation (GPCRWS) subroutine with NICKCHK to open

participating workstations using the same type and options as the master workstation.

 8. The conference controller might issue the Inquire Input Device State (GPQID) subroutine to determine

input device state of a participating workstation.

 9. Once it has determined the input device state for the participating workstation, the conference

controller might then issue one or more of the following Inquire Device State subroutines to determine

the state of an input device attached to a specified participating workstation.

v Inquire Choice Device State (GPQCH)

v Inquire Locator Device State (GPQLC)

v Inquire Pick Device State (GPQPK)

v Inquire Stroke Device State (GPQSK)

v Inquire String Device State (GPQST)

v Inquire Valuator Device State (GPQVL)

10. The conference controller issues the Set Input Device Mode (GPIDMO) subroutine to set the input

device state in order to request input from a specific device without locking out another participating

workstation from input focus.

11. The conference controller intercepts request input subroutine calls from the application. The

conference controller manages input focus among participating workstations and ensures that a

request to change input focus is honored.

178 The graPHIGS Programming Interface: Technical Reference

Starting and Stopping the Conference Utility Controller

When the application issues the first graPHIGS API subroutine call, the graPHIGS API attempts to load a

user exit facility routine when the environment is set up as follows:

For AIX:

v To allow for the conference controller utility to intercept graPHIGS API calls from a ksh or sh, the user

sets the environment variable, AFMEXIT to xxxx, where xxxx is the fully qualified or relative pathname

of the conference controller executable to be loaded. From a Csh, the user issues set AFMEXIT xxxx,

where xxxx is the fully qualified or relative pathname of the executable.

v To prevent the conference controller from being loaded in the shell, issue unset AFMEXIT.

v To display the current path, the user issues echo $AFMEXIT.

For MVS:

The graPHIGS API always attempts to load a module named AFMEXIT.

v If the application requires the exit loaded, then the loadlib containing AFMEXIT must be concatenated

to STEPLIB.

v To prevent the conference controller from being loaded, ensure that AFMEXIT is not concatenated to

STEPLIB.

For VM:

v Specify GLOBALV SELECT GRAPHIGS SETP AFMEXIT xxxxxx, where xxxxxx is the name of the the

executable to be loaded. It must be a member of a loadlib.

v Issue GLOBALV SELECT GRAPHIGS PURGE to remove the exit facility routine specification.

v Issue GLOBALV SELECT GRAPHIGS LIST to list any exit routines that are currently set.

The Conference Controller

The conference controller minimally includes the user exit routine and the application intercept exit routine.

The User Exit Routine

Once the user exit routine successfully loads, the address returned by the load service is invoked with the

following parameters.

int exit_init (appl_anc, gPFuncListp, exit_anchor)

 int *appl_anc;

 void (*gPFuncListp)();

 int *exit_anchor;

{

}

appl_anc

The graPHIGS API anchors the exit environment in this block. The user exit routines should not

modify it. This parameter is provided to the application intercept exit routine for two purposes:

v For use with gPSetInterceptExit(C or F) function

v For use with error handlers when the application is using the reentrant or non-reentrant

interfaces. The application’s Application Anchor Block (AAB), not the user exit’s internal AAB,

must be passed to the application error handler.

gPFuncListp

This parameter is a vector of function pointers. There are six function pointers available to the

conference controller:

Chapter 6. Enabling User Exits for Conferencing 179

gPCallThru The entry point to the function that the application intercept exit routine calls to invoke

the graPHIGS API subroutine.

gPSetInterceptExitC he entry point to the function used to set the application intercept exit routine address

that receives control for the application’s current and subsequent calls to the

graPHIGS API. This function should be used if your conference controller is written in

C.

gPSetInterceptExitF The entry point to the function used to set the application intercept exit routine

address that receives control for the application’s current and subsequent calls to the

graPHIGS API. This function should be used if your conference controller is written in

Fortran.

gPInvApplC The entry point to the conference controller function that must be used to invoke an

application routine such as an error handler set by either the Define Error Handling

(GPEHND) subroutine or the Specify and Error Exit and Error Threshold (GPEXIT)

subroutine. This routine ensures that the application’s environment is set up before it

is invoked. This entry should be used if your conference controller is written in C.

gPInvApplF The entry point to the conference controller function that must be used to invoke an

application routine such as an error handler set by either the Define Error Handling

(GPEHND) subroutine or the Specify and Error Exit and Error Threshold (GPEXIT)

subroutine. This routine ensures that the application’s environment is set up before it

is invoked. This entry should be used if your conference controller is written in

Fortran.

gPSetPassthruAAB The entry point to the function to call prior to disabling the application intercept exit or

prior to returning a return code of -1 from the application intercept exit. This function

establishes the environment that the passthru application anchor block points to in

order to replace the exit environment when it is terminated or disabled.

exit_anchor

A pointer to an 8-byte area that the application intercept exit routine uses to anchor its dynamic

storage. This pointer is passed to the application intercept exit routine on each call.

 exit_init is invoked immediately after the exit is loaded. It should allocate storage and initialize but make no

calls to the graPHIGS API, except to gPSetInterceptExit(C or F) or gPSetPassthruAAB.

To process the application API call that caused it to be loaded, the user exit routine must make a call to

gPSetInterceptExit(C or F) to enable an application intercept exit routine before returning. The graPHIGS

API then invokes the specified intercept exit routine prior to returning to the application and on subsequent

graPHIGS API subroutine calls.

If exit_init returns non-zero, then the graPHIGS API assumes that the initialization failed. It unloads the exit

and proceeds with normal graPHIGS API initialization. If exit_init returns zero, then it loads the application

intercept exit routine and processes the API subroutine that caused it to be loaded.

exit_init is also called at termination time. The parameter list is identical for both calls. This makes cleanup

symmetrical to initialization.

Due to the possible recursion when error handlers are called, application intercept exit routines must be

recursive (no writable statics). For this reason, Fortran is not recommended for a conference controller,

although it may work when the application is written in Fortran as well. The only disadvantage to writing all

conference controllers in the C programming language is that they require the runtime C library.

An example of how typical declarations might be specified for the initial entry:

/*---*/

/* Overlay for function vector (2nd parm on init call). */

/*---*/

struct gPfuncv {

 void (*gPCallThru)(); /* gPCallThru ptr */

 void (*gPSetInterceptExitC)(); /* gPSetExit for C exits */

 void (*gPSetInterceptExitF)(); /* gPSetExit for F exits */

180 The graPHIGS Programming Interface: Technical Reference

void (*gPInvApplC)(); /* gPInvAppl for C exits */

 void (*gPInvApplF)(); /* gPInvAppl for F exits */

 void (*gPSetPassthruAAB)(); /* gPSetPassthruAAB ptr */

};

/*--*/

/* Main routine for exit. This routine is invoked when the exit is */

/* first loaded. It is invoked only once. */

/*--*/

int exit_init(appl_anc, funclistp, anchor)

 int *appl_anc; /* Env anchor (Read/Only) */

 struct gPfuncv *funclistp; /* Ptr to function vectors */

 int *anchor; /* Anchor for exit storage */

{

}

The Application Intercept Exit Routine

Once the user exit routine has control, it may enable an application intercept exit routine to be given

control on the current application request and on subsequent API requests by issuing the

gPSetInterceptExit(C or F) function with the address of the intercept exit routine.

If the gPSetInterceptExit(C or F) function is issued with the address of zero in the funcp parameter, then

the application intercept exit routine is disabled from being called on each API request. This establishes

the environment for the passthru AAB to point to when it replaces the the disabled exit environment.

Before disabling an intercept exit, the application must invoke the gPSetPassthruAAB function routine.

A return code of -1 from the application intercept exit routine means that the conference controller will be

terminated and replaced by the environment pointed to by the passthru AAB. This allows an exit and its

overhead to be removed without terminating an active graPHIGS API application.

For example, for C:

void gPSetInterceptExitC (appl_anc, funcp)

 int *appl_anc;

 int (*funcp)();

{

}

or, for Fortran:

void gPSetInterceptExitF (appl_anc, funcp)

 int *appl_anc;

 int (*funcp)();

{

}

 appl_anc A pointer to the passthru AAB. It must not be modified by the application intercept exit

routine. It is the same as the first parameter on the exit_init call.

funcp The function pointer that identifies which entry point is to serve as the application

intercept exit routine. If funcp is null, then the graPHIGS API works in a passthru

mode such that all calls are passed from the graPHIGS API using the current

passthru AAB.

Invoking the Application Intercept Exit Routine

Any application intercept exit routine that is enabled by the user exit routine through gPSetInterceptExit in

response to an API request by the application is invoked as follows:

int intercept_exit(exit_anchor,rcpp,plistp,scbp)

 int *exit_anchor;

 int *rcpp;

Chapter 6. Enabling User Exits for Conferencing 181

int **plistp;

 struct scb *scbp;

{

}

 exit_anchor A pointer to the 8-byte area that was passed to the exit_init that is used to anchor

any storage required by the intercept exit routine.

rcpp A pointer to the rcp code of the current graPHIGS API subroutine.

plistp A pointer to the application’s parameter list. For the generic binding and the ISO

PHIGS Fortran binding, this is a list of pointers, one for each parameter. For the ISO

PHIGS C binding this can be pointers or values, depending on the API call itself.

Some parameters are passed by value for the C binding.

scbp A pointer to a stub communication block that describes some aspects of the API call.

The format for scbp is:

struct scb {

 char ssid; /* Sub-system id */

 /* ’T’ = TSO (MVS), */

 /* ’V’ = VM, ’X’ = AIX */

 unsigned char iftype; /* 0=non-ren, 1=ren, 2=SPI */

 unsigned char binding; /* 0=generic/Fortran, 2=ANSI C */

 unsigned char rsvd[1[default]

 unsigned char rsvd2;

 void (*erhp)(); /* ANSI default Exit */

}

Application Intercept Exit Call Through to the graPHIGS API

The application intercept exit routine calls through to the graPHIGS API to process the API request as

follows:

void gPCallThru(aab,rcpp,plistp,scbp)

int *aab

unsigned int *rcpp

int **plistp

struct scb *scbp

{

}

 aab Defined by the graPHIGS API for the reentrant and SPI interfaces. It is an 8-byte area

that must be initialized to zero before it is first used to invoke the graPHIGS API.

rcpp A pointer to the rcp code of the current graPHIGS API subroutine.

plistp A pointer to the application’s parameter list. For the generic binding and the ISO

PHIGS Fortran binding this is a list of pointers, one for each parameter. For the ISO

PHIGS C binding this is pointers or values, depending on the API call itself. Some

parameters are passed by value for the C binding.

scbp A pointer to a stub communication block that describes some aspects of the API call.

The format for scbp is shown above.

Preparing to Disable the Intercept Exit Routine

Before the application intercept exit routine stops processing the API requests, it issues the following:

void gPSetPassthruAAB(appl_anc,aabp)

int *appl_anc

int *aabp

{

}

 appl_anc A pointer to the passthru AAB. It must not be modified by the application intercept exit

routine. It is the same as the first parameter on the init call.

182 The graPHIGS Programming Interface: Technical Reference

aabp A pointer to an area defined by the application intercept exit routine that is initialized

during invocation of the graPHIGS API. This function is used before the intercept is

set to be disabled and before -1 is returned from the intercept to establish the AAB

that is to be used for subsequent API calls. If the passthru AAB is not set to the AAB

used to invoke the graPHIGS API, then a default AAB is used. This results in errors

indicating that the graPHIGS API is not open because it will not yet have an AAB.

The only current restriction is that passthru mode cannot be mixed with the exit that

set error handlers in VM/MVS. If this restriction is not observed, the error handler may

be invoked with the incorrect programming language environment, resulting in an

abend. This restriction does not apply to AIX.

Passing Error Handler Calls from the graPHIGS API to the Application

The gPInvAppl(C or F) routines must be used by the application intercept exit routine when an error

handler call from the graPHIGS API is intercepted and is to be passed on to the actual application error

handler. gPCallThru does not apply in this case because the application, not the graPHIGS API, is being

called.

For example, for C:

void gPInvApplC(appl_anc,routine_addr,parms)

or for Fortran:

void gPInvApplF(appl_anc,routine_addr,parms)

int *appl_anc

void(*routine_addr)()

parms

{

}

Where

 appl_anc A pointer to the passthru AAB. It must not be modified by the application intercept exit

routine. It is the same as the first parameter on the init call.

routine_addr A pointer to the application’s error handler routine.

parms Any other parameters expected by the receiving error handler routine.

These special entry points are necessary because of the great differences in runtime environments among

C, Fortran, Pascal, and other programming languages. In order to ensure that a Fortran application with a

Fortran error handler runs correctly, graPHIGS API must invoke the error handler with the same register

content as when the application last called the graPHIGS API. this process, the graPHIGS API can no

longer act directly since the call that generates the error comes from the exit code and not from the

application. Exit routines written in a language different from the application must define their own error

handlers and pass them on to those of the application using the gPInvAppl(C or F) routine.

The general flow for a conference utility exit routine is shown in the following figure. (A) and (B) show the

points at which the runtime environment must be the same (that is, the register contents must be very

similar).

Chapter 6. Enabling User Exits for Conferencing 183

Figure 5. User Exit Routine Flow. This diagram shows the general flow for a conference utility exit routine. The

application uses an API call to invoke the exit routine (A), which uses gPCallThru to invoke the graPHIGS API (B). The

graPHIGS API (B) uses gPInvAppl to invoke the Exit Error Handler (B), which directly invokes the Application Error

Handler. The Application Error Handler returns to the Error Handler (A), which returns to the graPHIGS API, and so on

back to the top level. Points ″A″ denote that the program state must be the same before calling the gPCallThru routine

and after returning from the Application Error Handler. Points ″B″ denote that program state must be equivalent before

and after a call to the gPInvAppl routine.

184 The graPHIGS Programming Interface: Technical Reference

Part 3. Defaults and Nicknames

© Copyright IBM Corp. 1994, 2002 185

186 The graPHIGS Programming Interface: Technical Reference

Chapter 7. Controlling the Environment with Defaults and

Nicknames

This chapter provides information about defaults and nicknames. It also provides information about

processing options (PROCOPTs). Use this information to modify aspects of your environment to suit the

needs of your applications.

Overview of Controlling the Environment

In the graPHIGS API system and workstation environment, certain fields (sizes, names, options, etc.) are

given preset values by the graPHIGS API. In some instances, these preset values may not suit the needs

of the application. The graPHIGS API allows the programmer or end user to change these preset values

through defaults and nicknames. Defaults are intended to modify the system environment values, while

nicknames are intended to modify values associated with a particular workstation environment.

Changes can be made in two ways:

v The application programmer and subsequently, the end user, may specify defaults and/or nicknames

through an External Defaults File (EDF). The application program does not need to be recompiled or

rebuilt.

In addition, you can specify the workstation processing options (PROCOPTS) by using the PROCOPTS

option (see PROCOPT (Processing Options)) on the Create Workstation (GPCRWS) subroutine call.

v The application programmer may specify defaults and/or nicknames through a control block specified as

a parameter on the Open graPHIGS (GPOPPH) subroutine call in the application program. This control

block is called the Application Defaults Interface Block (ADIB). If defaults or nicknames are changed, the

application must be re-compiled and rebuilt.

Defaults allow you to change the system environment. You can control the trace state, direct trace output,

adjust the size of the in-core trace table, set input and output buffer and queue sizes, define nucleus

connection processing, and inhibit shell syntax checking.

If the same nickname or default value is specified in both an ADIB and an EDF, the EDF value will be

ignored and the ADIB value will be used. Because the ADIB has higher priority than the EDF, the

application programmer can control the user’s environment. The only exception to this rule is the trace

control word— the trace control word itself determines priorities. (Trace priorities are discussed in The

graPHIGS Programming Interface: Writing Applications.)

Processing of the defaults and nicknames specified through an EDF and/or an ADIB occurs during Open

graPHIGS processing.

Nicknames allow you to change workstation environment values. The nickname values associated with a

workstation environment are referred to as processing options or PROCOPTS. Nicknames also allow you

to change the workstation type (wstype) and connection identifier (connid) parameters specified on the

Open Workstation (GPOPWS) and Create Workstation (GPCRWS) subroutines.

If the same nickname is specified in both an ADIB and an EDF, the API resolves the nickname using first

the EDF values followed by the ADIB values. Any PROCOPTs included on the selected nicknames are

merged with any PROCOPTs specified on the GPCRWS subroutine to produce a final PROCOPT list. See

How the graPHIGS API Processes Nicknames for a discussion of this processing.

The remainder of this chapter explains how defaults and nicknames are processed, the format of an EDF

specification, the format of an ADIB specification, and the explanation and syntax of each default,

nickname, and PROCOPT.

© Copyright IBM Corp. 1994, 2002 187

The following table compares the EDF and ADIB.

 Table 104. Comparison of EDF and ADIB

Name Description Limitations Priority

External Defaults File (EDF) A file for users to modify

their environment

Not valid for applications

running locally on a 6090 in

a DAP environment.

Each default or nickname

value is in effect only if no

ADIB value exists.

Application Defaults

Interface Block (ADIB)

A control block area passed

as a parameter by the

application program

To change defaults, you

must re-compile or re-build

your program

Overrides EDF (except for

Trace setting in the EDF)

The External Defaults File (EDF)

The External Defaults File contains records which consist of User-Defined Specifications (UDSs). The

UDSs in this file allow you to change user default options at run-time without re-compiling or re-building

your application. The API accesses the External Defaults File as follows:

 AIX The file must be named PROFILE or must be specified in the gPPROFILE environment variable.

When the GPOPPH subroutine is called or when a remote graPHIGS API nucleus is started, the

graPHIGS API searches for a PROFILE in this order:

1. gPPROFILE environmental variable

The gPPROFILE environment variable allows you to specify an alternate filename or an alternate

directory path containing the file, PROFILE, as the external defaults file.

If the gPPROFILE environmental variable is defined as a valid file name, then that file is used as

the External Defaults File. If the gPPROFILE environmental variable is defined as a valid

directory name, then that directory is searched for a file named PROFILE. If this file is found,

then it is used as the External Defaults File.

If the gPPROFILE environmental variable is not defined, is defined with an invalid file name or

directory name, or there is no file named PROFILE in the defined valid directory name, the

search continues.

For more information on setting environment variables, see the AIX 5L Version 5.3 Commands

Reference.

2. Current directory

The current directory is searched for a file named PROFILE. If there is no file named PROFILE

in the current directory, the search continues.

3. /usr/lpp/graPHIGS/etc directory

The graPHIGS API provides a sample External Defaults File as /usr/lpp/graPHIGS/etc/
PROFILE.

MVS AFMDEFS must be the DDNAME used to allocate the sequential data set containing the default

information. The file must be F- or V- format, with an LRECL of no greater than 256. The

recommended format is F(80).

VM The file must be named PROFILE, have a filetype of AFMDEFS, and be on a currently-accessed disk

when the application calls Open graPHIGS (GPOPPH).

Format of the User-Defined Specification (UDS)

A UDS is a string that can be up to 32,000 characters long. Use one of the following forms for a record in

the graPHIGS API External Defaults File:

 Table 105. UDS Format

[label] UDS-type UDS-value [OPTIONAL COMMENTS]

[label] UDS-type UDS-value-part1, [OPTIONAL COMMENTS]

 UDS-value-part2, [OPTIONAL COMMENTS]

188 The graPHIGS Programming Interface: Technical Reference

Table 105. UDS Format (continued)

 UDS-value-part3, [OPTIONAL COMMENTS]

 UDS-value-partn, [OPTIONAL COMMENTS]

* COMMENT TEXT

The UDS-type parameter is one of the following:

 AFMMDFT or DEFAULT Default value

AFMMNICK or NICKNAME Nickname value

The UDS value is specified as keyword=specified_value. If you specify a keyword with nothing after the

equal sign (=), the current value is not changed.

Valid default and nickname keywords and values are given with a description of each default or nickname

in the following sections.

Records in the External Defaults File must conform to Assembler-like coding conventions. When specifying

a UDS, you must observe the following conventions:

v Labels are optional. If specified, they must start in column one and must not be longer than eight

characters. They are ignored.

v The UDS-type must be preceded by at least one blank.

v The UDS-type and UDS-value parameters must be separated by at least one blank.

v In a UDS-value parameter, a comma (,) followed by a blank or end-of-record marker indicates that the

UDS-value is continued on the next non-comment record. The continuation must be preceded by at

least one blank. Any text that starts in column one is assumed to be part of a label.

v The UDS-value parameter must not contain any embedded blanks.

v The API assumes that any text following a blank after a UDS-value parameter is comment text, and

ignores it.

v There is no limit on the number of continuation records permitted.

v If you specify comments, they must have an asterisk (*) in column one. The API ignores comment

records in all circumstances.

v You can use mixed case to enter a UDS. In the S/390 environment, all lowercase characters are

converted to uppercase before processing. In the AIX environment, all UDS types and keywords are

converted to uppercase, but values are not converted.

The Application Defaults Interface Block (ADIB)

The Application Defaults Interface Block (ADIB) is the second method for the application programmer to

specify defaults and nicknames. The ADIB takes priority over any defaults or nicknames specified also in

an External Defaults File (EDF), except possibly the Trace default.

The application must specify the ADIB as the second parameter on the Open graPHIGS (GPOPPH)

subroutine. If you don’t specify any ADIB options, set the GPOPPH parameter to zero.

Format of the ADIB

The ADIB consists of a fullword integer specifying the ADIB length, followed by any number of Application

Default Specifications (ADS). When you specify the value of the length fields in bytes, include the length

fields themselves.

This is the format of an ADIB with its ADS:

Chapter 7. Controlling the Environment with Defaults and Nicknames 189

Figure 8. Format of ADIB and ADS

| Total length of ADIB | Fullword integer

---------------------------\

| | \

| ADS # 1 | \

| | \---------------------------

| | | Total length of ADS | Fullword integer

---------------------------\ ---------------------------

| | \ | ADS code (type of ADS) | Fullword integer

| ADS # 2 | \ ---------------------------

| | \| ADS data | Variable length

| | ---------------------------

/ /

/ /

| |

| ADS # n |

| |

| |

The ADS code identifies the type of ADS. The ADS data is a variable length field and is dependent on the

type of ADS.

Defaults

Defaults allow the application programmer or end user to modify the preset values of the graPHIGS API

system environment. Following are the default descriptions and their syntax as set through an EDF or an

ADIB.

AIXTRCE (AIX Trace Output)

This default directs trace output from the API on the operating system. It is specified as a string of up to

50 characters that indicates the file path, followed by two 8-character strings that specify a filename and

file extension.

Initial Preset Value

The filename AFMTRACE within the current working path.

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT AIXTRCE=(aaa...a,bbbbbbbb,cccccccc)

aaa...a is the file path, bbbbbbbb is the filename, and cccccccc is the file extension for trace output.

If you specify no values between commas, for example: AFMMDFT AIXTRCE=,, the values are set to nulls

(file path=’’, file name=’’, file extension=’’).

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS (greater | Fullword integer

| than 8, but a fullword multiple) |

| ADS code = 603 | Fullword integer

| Fully-qualified filename | Variable-length character string

190 The graPHIGS Programming Interface: Technical Reference

ARCHIVE (File Descriptors)

This default directs the output of an Open Archive File (GPOPAR) subroutine. A From file descriptor and a

To file descriptor are specified.

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT ARCHIVE=(aaa...a,bbb...b,)

aaa...a is the From archive file descriptor used in the Open Archive File (GPOPAR) subroutine, bbb...b is

the To archive file descriptor to be used instead. Specify both file descriptors with no blanks, but include a

comma before closing the parenthesis. Refer to Archiving Structures for more information on structure

archive.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS (application dependent) | Fullword integer

| ADS code = 117 | Fullword integer

| Reserved = 0 | Fullword integer

| Length of From descriptor | Fullword integer

| From descriptor | *Variable-length character string

| Length of To descriptor | Fullword integer

| To descriptor | *Variable-length character string

*(padded to word boundary)

CMSTRCE (CMS Trace Output)

This default directs trace output from the API on the VM/CMS system. Two 8-character strings indicate the

filename and filetype used by the graPHIGS API.

Initial Preset Value

A filename of AFM00001 and a filetype of AFMTRACE.

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT CMSTRCE=(aaaaaaaa,bbbbbbbb)

aaaaaaaa is the filename, bbbbbbbb is the filetype for receiving trace output in the CMS environment. The

statement AFMMDFT CMSTRCE=, sends trace output to the printer.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 24 | Fullword integer

| ADS code = 502 | Fullword integer

| Filename | 8-byte character string

| - - - - - - - - - - - - - - - - - |

| Filetype | 8-byte character string

Chapter 7. Controlling the Environment with Defaults and Nicknames 191

COMBSZ (Input and Output Buffer Sizes)

This default sets the input and output buffer sizes that are to be used for all nucleus connections.

Initial Preset Value

65516 bytes.

EDF

To specify this default through an EDF, the correct syntax is:

AFMMDFT COMBSZ=(n[default],n[default])

where n[default] is the size of the input buffer that the shell uses to receive responses and events from the

nucleus. n[default] is the size of the output buffer that the shell uses to send requests to the nucleus.

The size of each of the input and output buffers may have a maximum of 65516 bytes and a minimum of

4K bytes.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 16 | Fullword integer

| ADS code = 106 | Fullword integer

| Size of input buffer (in bytes) | Fullword integer

| - - - - - - - - - - - - - - - - - |

| Size of output buffer (in bytes) | Fullword integer

COMMENT (Programming Comments)

This default lets you annotate the EDF with comments. A comment can be a list of strings of 8 or less

non-blank characters. Your application can specify up to 8,000 comment strings. The API ignores

comments during default processing. You can specify comments only in the External Defaults File.

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT COMMENT=(cccccccc,cccccccc,........)

ADIB

Not valid.

DAPPATH (DAP Download File Path)

This default allows you to specify the file path for temporary storage of downloaded DAP files. This default

must be specified as an EDF on the operating system, where the target remote nucleus resides.

Initial Preset Value

/tmp/.gP

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT DAPPATH=ccccc

where ccccc is a file path up to fifty characters in length. This file path is used as the temporary directory

for the storage of DAP files on the current operating system remote nucleus. The file path is used for the

transfer and execute function of the Execute Application Process (GPEXAP) subroutine.

192 The graPHIGS Programming Interface: Technical Reference

ADIB

Not valid.

DEFACTF (Activate Font Handling)

This default allows you to select the way the graPHIGS API handles activate font requests.

Initial Preset Value

yes

EDF

To specify this default through an EDF, the correct syntax is:

AFMMDFT DEFACTF=yes|no

If DEFACTF=yes, and an activate font request to a workstation fails because the character set/font pair

cannot be found on the nucleus disk system, the graPHIGS API searches its disk for the character/font. If

it finds the font definition, it will send it to the nucleus for activation to the workstation.

If DEFACTF=no, and an activate font request to a workstation fails, the graPHIGS API simply posts the

error to the application.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 109 | Fullword integer

| Request font handling | Fullword integer

| 0 = no, 1 = yes |

DEFNUC (Define Nucleus Connection Processing)

This default defines whether your application will explicitly issue the Connect to Nucleus subroutine

(GPCNC) or graPHIGS API will do nucleus connection processing for your application. If this default is not

specified and your application is not a distributed application process (DAP), the graPHIGS API will

connect to a nucleus with identifier=1 on behalf of your application, using the CALL connection method. (It

will additionally create a structure store using identifier=1 and select that structure store for editing.) If this

default is not specified and your application is a distributed application process (DAP), the graPHIGS API

will not connect to a nucleus. Your application must explicitly issue the Connect to Nucleus (GPCNC)

subroutine. For an explanation of the connection processing, and for the valid data values, see Connecting

to the Nucleus. See also NUC/TONUC (Nucleus Respecification) for information on changing the

connection method and specification using defaults.

Initial Preset Value

Connection method = CALL, connection specification = NULL. (For DAPs, the initial preset value is 0,

which means nucleus connection processing is suppressed and your application will explicitly issue the

Connect to Nucleus (GPCNC) subroutine.)

EDF

v To have the graPHIGS API do nucleus connection processing on behalf of your application, specify the

connection method and specification as:

 AFMMDFT DEFNUC=(n,ccc ... ccc)

where n is an integer that specifies one of the connection methods supported by your nucleus and ccc

... ccc is a variable-length character string that specifies a nucleus connection specification in support of

the method selected.

Chapter 7. Controlling the Environment with Defaults and Nicknames 193

Note: As part of doing nucleus connection processing, the graPHIGS API will additionally create a

structure store (GPCRSS) using identifier=1 and select that structure store (GPSSS) for editing.

v To have your application explicitly issue the Connect to Nucleus (GPCNC) subroutine (suppress

graPHIGS API from doing nucleus connection processing), specify the UDS as follows:

AFMMDFT DEFNUC=(0,)

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS (is | Fullword integer (must be a multiple of 4)

| application-dependent) |

| ADS code = 104 | Fullword integer

| Connection method | Fullword integer

| - - - - - - - - - - - - - - - - - |

| Length of nucleus connection | Fullword integer

| specification |

| - - - - - - - - - - - - - - - - - |

| Nucleus connection specification | Variable-length character string

Note: Specifying a connection method =0, a specification length =0, and an ADS length =16 in the ADIB

will suppress graPHIGS API from doing nucleus connection processing.

ERREVENT (Enable Error Event)

You use the ERREVENT default to enable the queuing of errors on the graPHIGS event-queue. When

enabled, errors are queued as events of class 401 with a major code equal to the error’s number and a

minor code of 0. No additional data is queued with the event.

Other than the queuing of an error as an error-event, the error-handling mechanisms of the graPHIGS API

are unaffected by the value of the ERREVENT default. See Error Handling for an explanation of

error-handling within the graPHIGS API.

The only errors that cannot be queued on the graPHIGS event-queue are errors related to the state of the

graPHIGS API. For example, error 5 ″FUNCTION REQUIRES STATE STOP OR NROP (NOT STCL)″ is

not to be queued on the graPHIGS event queue even if you enable error-event queuing via the

ERREVENT default.

In combination with a graPHIGS event-handler, enabling error-events enables the graPHIGS API to inform

your application of an error condition without the need for your application to call a graPHIGS API function.

Initial Preset Value

no

EDF

v To specify this default through an EDF, the correct syntax is:

 AFMMDFT ERREVENT=yes|no

v If ERREVENT=no (the default), errors detected by the graPHIGS API Are queued on the graPHIGS

error-queue only (not the graPHIGS event-queue).

v If ERREVENT=yes, all errors detected by the graPHIGS API are queued on the graPHIGS event-queue

as events of class 401 with a major-code equal to the error’s number, a minor-code of zero (0), and no

event-data. All errors are also queued on the graPHIGS error-queue.

v For both ERREVENT=no and ERREVENT=yes, errors queued on the graPHIGS error-queue are

processed by the next call to the graPHIGS API.

194 The graPHIGS Programming Interface: Technical Reference

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 119 | Fullword integer

| Request queuing of error-events | Fullword integer

| 0 = no, 1 = yes |

HCHECK (Shell Syntax Checking)

This default allows you to specify if the shell will check the syntax of its input parameters.

Initial Preset Value

yes (the shell does syntax checking).

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT HCHECK=yes|no

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 105 | Fullword integer

| Syntax checking | Fullword integer

| 0 = no, 1 = yes |

IQSIZE (Input Queue Size)

With this default you can change the size of the allocated input queue.

Initial Preset Value

16K bytes.

EDF

To specify this default through an EDF, the correct syntax is:

AFMMDFT IQSIZE=n

where n is the queue size, the number of bytes of storage to allocate for the input queue (minimum of 4K

bytes).

Note: If storage is not available for the size you request, the graPHIGS API will not open.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 107 | Fullword integer

| Number of bytes for the queue | Fullword integer

Chapter 7. Controlling the Environment with Defaults and Nicknames 195

MAXWKS (Maximum Workstation Support)

This default specifies the maximum number of workstations that may be opened and associated to the

same structure store.

Initial Preset Value

Four (4).

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT MAXWKS=n

where n is the number of workstations to be opened and associated. n may be any value from 1 to 32.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 12 |

| ADS code = 113 |

| Number of workstations |

NICKCHK (Nickname Processing Default)

This default allows you to specify if the graPHIGS API will do nickname processing for workstations

opened by your application.

Initial Preset Value

yes

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT NICKCHK=yes|no

If NICKCHK=yes, then the graPHIGS API library performs nickname processing to resolve the workstation

type, connection identifier, and options using values specified in the EDF, ADIB, and on the Create

Workstation (GPCRWS) or the Open Workstation (GPOPWS) subroutine. It sends the result of that

processing to the nucleus when requesting a create workstation. This is the default.

If NICKCHK=no, then the graPHIGS API library does not perform nickname processing to resolve the

workstation type, connection identifier, and options. It sends the workstation type, connection identifier, and

options as explicitly specified in the Create Workstation (GPCRWS) or Open Workstation (GPOPWS)

subroutine to the nucleus to request a create workstation.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 116 | Fullword integer

| Nickname processing | Fullword integer

| 0 = no, 1 = yes |

196 The graPHIGS Programming Interface: Technical Reference

NUC/TONUC (Nucleus Respecification)

This default allows you to change the nucleus connection processing values (the FROM connection method

and connection specification) to the specified replacement values (TO). This default is used whenever a

nucleus is connected (either explicitly using the GPCNC subroutine or implicitly by using the default

nucleus connection processing).

If several NUC/TONUC defaults are specified (for example, in the ADIB and in the EDF), the list of them is

searched starting with the ADIB defaults, followed by the EDF defaults. The lists are searched until a

matching default is found. A match occurs when the input connection method and connection specification

(specified on the GPCNC subroutine or from the nucleus connection processing) are both the same as the

FROM connection method and connection specification in the default (i.e., the NUC values). When matched,

the TO connection method and connection specification values (the TONUC values) replace the input

values and are used to complete the nucleus connection processing.

See Connecting to the Nucleus for a description of the supported connection methods and connection

specifications.

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT NUC=(cml, csl),TONUC=(cm2,cs2)

where cm1 and cs1 are the nucleus connection method and connection specification to be matched and

cm2 and cs2 are the replacement connection method and connection specification values.

The NUC and TONUC values must be on the same default specification. If the NUC value is omitted, the

default will match any input connection method and specification.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS (greater | Fullword integer

| than 8, but a fullword multiple) |

| ADS code = 110 | Fullword integer

| FROM connection method | Fullword integer

| TO connection method | Fullword integer

| FROM specification length | Fullword integer

| FROM specification | (padded to word boundary)

| TO specification length | Fullword integer

| TO specification | (padded to word boundary)

Specify the value of zero in the FROM connection method and FROM specification length fields in order

for the ADS default to match any input method and specification.

SYNCPROC (Synchronous X Event Processing)

This default tells the graPHIGS API that the application will be monitoring X events for the graPHIGS X

workstations and will notify the graPHIGS API when an event occurs.

Initial Preset Value

no (the graPHIGS API will check for X events)

Chapter 7. Controlling the Environment with Defaults and Nicknames 197

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT SYNCPROC=yes|no

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 120 | Fullword integer

| SYNCPROC active | Fullword integer

| 0 = no, 1 = yes | Fullword integer

TRACE (Trace Control Word)

This default indicates the state of the Trace Control Word (whether it allows tracing or not).

The trace word itself determines priority.

Initial Preset Value

0 (off).

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT TRACE=n

where n is the value of the Trace Control Word. See The graPHIGS Programming Interface: Writing

Applications or The GDDM/graPHIGS Programming Interface: Installation and Problem Diagnosis for more

information about the function and priority of trace.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 102 | Fullword integer

| Trace Control Word | Fullword integer

TRTABLE (Trace Table Entries)

This default lets you determine the number of trace entries that the API holds in the cyclic in-core trace

table. This does not apply to AIX.

Initial Preset Value

100 entries.

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT TRTABL=n

where n is an integer, in the range of 5 to 1000, that defines the number of trace entries you want in the

trace table.

ADIB

To specify this default through an ADIB, the correct structure is:

198 The graPHIGS Programming Interface: Technical Reference

| Total length of ADS = 12 | Fullword integer

| ADS code = 103 | Fullword integer

| Number of trace table entries | Fullword integer

TSOTRCE (TSO Trace Output)

This default is an 8-character string indicating the DDNAME used by the API to direct trace output on

MVS/TSO.

Initial Preset Value

AFMTRACE

EDF

To specify this default through an EDF, the correct syntax is:

 AFMMDFT TSOTRCE=cccccccc

where cccccccc is the DDNAME for the MVS/TSO trace output.

ADIB

To specify this default through an ADIB, the correct structure is:

| Total length of ADS = 16 | Fullword integer

| ADS code = 401 | Fullword integer

| MVS/TSO DDNAME | 8 character bytes

Nicknames

Using nicknames, you can modify values associated with a particular workstation environment. You can

specify a different workstation type and connection identifier as well as processing options (called

PROCOPTS: see PROCOPT (Processing Options)).

Each nickname specification may contain a workstation type (WSTYPE: see WSTYPE (Workstation Type))

and connection identifier (CONNID: see CONNID (Connection Identifier)) to match the workstation type

and connection identifier specified on the Open Workstation (GPOPWS) or Create Workstation (GPCRWS)

subroutine calls.

The nickname may also contain to-workstation types (TOWSTYPE: see TOWSTYPE (Target Workstation

Type)) and to-connection identifiers (TOCONNID: see TOCONNID (Target Connection Identifier)) to

replace the matched WSTYPE and CONNID specified on the GPOPWS or GPCRWS subroutines. Both of

these specifications are optional. You can specify multiple nickname specifications and/or define more than

one nickname for the same WSTYPE and CONNID.

Additionally, you may specify PROCOPT workstation environment values. These are applied to the

workstation environment to allow customization of certain options.

A nickname in the EDF may then appear as

AFMMNICK CONNID=matched_connid,

 TOCONNID=new_connid,

 WSTYPE=matched_wstype,

 TOWSTYPE=new_wstype,

 PROCOPT=((keyword1,value1),(keyword2,value2)...)

Chapter 7. Controlling the Environment with Defaults and Nicknames 199

When you specify a nickname ADS in the ADIB, you specify:

v The total length of the field (such as a fullword integer)

v The nickname code

v The ADS data that includes character string fields that specify the WSTYPE (see WSTYPE (Workstation

Type)) to be matched, the CONNID (see CONNID (Connection Identifier)) to be matched, a new

WSTYPE, and a new CONNID you specify. If you do not want to specify a replacement WSTYPE or

replacement CONNID field, specify blanks.

v Optional PROCOPT ADSs.

There are two formats for a nickname ADS. One format is for compatibility and supports connection

identifiers that are specified as 8-byte character strings. A second format supports connection identifiers

that are variable-length character strings.

Nickname Specification, ADS codes 2001 and 2002

FORMAT 1:

8-BYTE CHARACTER STRING CONNECTION IDENTIFIER

| Total length of ADIB| Fullword integer

| Total length of ADS | Fullword integer

| ADS code = 2001 | Fullword integer

| from WSTYPE | 8-byte character string

| from CONNID | 8-byte character string

| to WSTYPE | 8-byte character string

| to CONNID | 8-byte character string

|Length of PROCOPT 1 | Fullword integer

| PROCOPT 1 code | Fullword integer

| PROCOPT 1 data |

|Length of PROCOPT 2 | Fullword integer

| PROCOPT 2 code | Fullword integer

| PROCOPT 2 data |

/ /

/ /

|Length of PROCOPT n | Fullword integer

| PROCOPT n code | Fullword integer

| PROCOPT n data |

FORMAT 2:

VARIABLE-LENGTH CHARACTER STRING CONNECTION IDENTIFIERS

| Total length of ADIB| Fullword integer

| Total length of ADS | Fullword integer

| ADS code = 2002 | Fullword integer

200 The graPHIGS Programming Interface: Technical Reference

| from WSTYPE | 8-byte character string

|Length of from CONNID| Fullword integer

| from CONNID | Variable-length character

| | string (padded to word boundary)

| to WSTYPE | 8-byte character string

| Length of to CONNID | Fullword integer

| to WSTYPE | 8-byte character string

| to CONNID | Variable-length

| | string (padded to word boundary)

|Length of PROCOPT 1 | Fullword integer

| PROCOPT 1 code | Fullword integer

| PROCOPT 1 data |

|Length of PROCOPT 2 | Fullword integer

| PROCOPT 2 code | Fullword integer

| PROCOPT 2 data |

/ /

/ /

|Length of PROCOPT n | Fullword integer

| PROCOPT n code | Fullword integer

| PROCOPT n data |

See examples and explanations of PROCOPTS in PROCOPT (Processing Options). Default values are

workstation-dependent.

How the graPHIGS API Processes Nicknames

The following steps explain the process the graPHIGS API uses to process nicknames.

1. When your application calls Open graPHIGS (GPOPPH), the API builds two lists of nicknames: one list

from any nicknames found in the EDF and the other list from any nicknames found in the ADIB. These

lists are used on all subsequent Open Workstation (GPOPWS) and Create Workstation (GPCRWS)

subroutine calls.

2. When the Open or Create Workstation subroutine is called, the two nickname lists are scanned to

determine replacement values for the workstation type and connection identifier and to obtain the

associated PROCOPT values. (The criteria of the search is described below.) The workstation type

and connection identifier passed on the subroutine call are used to scan the EDF file nicknames. Any

replacement values for the workstation identifier and/or connection identifier are then used to scan the

ADIB nicknames. (If the EDF scan did not result in replacement values, then the subroutine input

values are used to scan the ADIB nicknames.) The connection identifier and workstation type

nickname values from the ADIB scan are then used to open the specified device.

3. The nickname scan is a multi-pass scan that searches for nicknames which match the current

workstation type and connection identifier: when matching values are found, the specified replacement

values become the current workstation type and connection identifier, replacing the previous values.

The scan is then resumed with the replacement values.

Chapter 7. Controlling the Environment with Defaults and Nicknames 201

Each nickname scan operates as follows:

a. Before the scan is started, the API constructs a ″current″ parameter list that contains:

v ″current workstation type″ (WSTYPE: see WSTYPE (Workstation Type))

v ″current connection identifier″ (CONNID: see CONNID (Connection Identifier))

These current values are those passed to each of the two scans (See step 2 above).

b. The nickname specifications are compared for any WSTYPE and CONNID values that both match

the ″current″ WSTYPE and CONNID values. A blank or nulls in the nickname specification

WSTYPE or CONNID always matches the ″current″ WSTYPE or CONNID value.

c. When a match is found, the API creates a ″replacement″ parameter list from the nickname

TOWSTYPE and (TOWSTYPE: see TOWSTYPE (Target Workstation Type)) TOCONNID values,

(TOCONNID: see TOCONNID (Target Connection Identifier)) and obtains any PROCOPT values

specified by the nickname.

d. This process continues until the end of the nickname list is reached. If any matches were found,

the ″current″ values are updated with the ″replacement″ values found (the TOWSTYPE and

TOCONNID). The nickname list is then re-scanned using these new ″current″ values. Any

previously-matched nicknames are excluded from the re-scan.

e. The API continues re-scanning (steps B through E above) the nickname list until a scan is

completed without any further matches. The last ″current″ WSTYPE and CONNID values are

returned from the scan process, along with any PROCOPT values from the matching nickname

specification.

4. When the two nickname lists have been scanned, the final WSTYPE (see WSTYPE (Workstation

Type)) and CONNID (see CONNID (Connection Identifier)) values are used to complete the Open

Workstation or Create Workstation processing.

5. PROCOPTs (see PROCOPT (Processing Options)) may be specified as part of the nickname

specifications and as a parameter on the Create Workstation subroutine call.

The PROCOPTs are merged together to form a combined PROCOPT list. The merge is performed as

follows:

1. If the subroutine call is for Create Workstation and PROCOPTs (see PROCOPT (Processing Options))

are specified, the entire list of specified PROCOPTs is obtained.

2. If any PROCOPTs were specified on the matching nickname from the ADIB scan, then any of these

PROCOPTs not already specified in the Create Workstation list are added to that list of PROCOPTs (if

any).

3. If any PROCOPTs were specified on the matching nickname from the EDF scan, then any of these

PROCOPTs not already specified in the merged list are added to that list of PROCOPTs (if any).

The resultant merged list of PROCOPTs is then used to complete the Open or Create workstation

processing.

Nickname Syntax

Nicknames are intended to modify values associated with a particular workstation environment. The syntax

explanations of a nickname set through an EDF and an ADIB follow (see ADIB).

CONNID (Connection Identifier)

The CONNID is a string of characters used to specify the connection identifier to which this nickname

applies.

TOCONNID (Target Connection Identifier)

The target connection identifier is a string of characters that replace the specified connection identifier, if

the wstype and connid parameters match the corresponding actual values.

202 The graPHIGS Programming Interface: Technical Reference

WSTYPE (Workstation Type)

The workstation type is a string of 0-8 characters used to match the nickname workstation type.

TOWSTYPE (Target Workstation Type)

The actual workstation type is a string of 0-8 characters that are the real value substituted for a connection

identifier. The towstype replaces the actual workstation type if the wstype and connid parameters match

the corresponding actual values.

PROCOPT (Processing Options)

PROCOPTS are a list of processing options. You can use these options to change the way in which the

API treats a specific device or to specify workstation-specific default values. PROCOPTS can also be

specified with the option parameter on the Create Workstation subroutine call (GPCRWS). Each

specification defines a specific workstation option followed by a number of arguments that are valid for that

option.

PROCOPTS are listed in the form of ″PROCOPT-specifications″ (PROCOPT-specs). Each

PROCOPT-spec defines a specific workstation option followed by a number of arguments that are valid for

that option in the following format:

PROCOPT=((PROCOPT_spec),(PROCOPT_spec),...)

The expanded PROCOPT appears like this:

PROCOPT=((option_keyword,argument,argument),(option_keyword,argument),...

See PROCOPTS for details about PROCOPTS.

Nickname Example

The following sample EDF nickname specification changes from one workstation to another and specifies

a PROCOPT:

AFMMNICK CONNID=*,

 TOCONNID=IBM5080,

 WSTYPE=GDDM,

 TOWSTYPE=5080,

 PROCOPT=((DISPLMOD,5080-16))

PROCOPTS

PROCOPTS are a list of processing options. You can use these options to change the way in which the

API treats a specific device or to specify workstation-specific default values. PROCOPTS can also be

specified with the option parameter on the Create Workstation (GPCRWS) subroutine. Each specification

defines a specific workstation option followed by a number of arguments that are valid for that option.

Examples and explanations of PROCOPT specifications follow. Default values are workstation-dependent.

See Workstation Description Tables for specific workstation values.

CLDEVS (Create Input Device)

This PROCOPT lets you create a logical input device even if a physical device is not present.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((CLDEVS),...

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

Chapter 7. Controlling the Environment with Defaults and Nicknames 203

| Total length of ADS = 8 | Fullword integer

| ADS code = 23 | Fullword integer

DCMETERS (Device Coordinate Meters)

This PROCOPT enables you to define the width and height of the display device in Device Coordinate

(DC) meters. Both the width and the height values must be greater than zero (0.0). The maximum value

for both the width and the height is subject to the capabilities of the workstation.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((DCMETERS, float1, float2),...

where float1 is the display width specified in meters and float2 is the display height specified in meters.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 16 | Fullword integer

| ADS code = 36 | Fullword integer

| Display width in meters | Short floating-point value

| Display height in meters | Short floating-point value

DCTES (Depth Cue Table)

This PROCOPT lets you specify the number of depth cue table entries.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((DCTES, n),...

where n is the number of depth cue table entries.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 21 | Fullword integer

| Number of depth cue entries | Fullword integer

DCUNITS (Device Coordinate Address Units)

This PROCOPT enables you to define the width and height of the display in Device Coordinate (DC)

address units. The minimum value for either the width or the height is 8. Likewise, the maximum value for

either the width or the height is 4096.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((DCUNITS, n1, n2),...

204 The graPHIGS Programming Interface: Technical Reference

where n1 is the display width in address units and n2 is the display height in address units.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 16 | Fullword integer

| ADS code = 35 | Fullword integer

| Display width in address units | Fullword integer

| Display height in address units | Fullword integer

DIRCOLOR (Direct Color)

This PROCOPT lets you specify workstation color tables to be initialized for direct color rather than

initialized for the default which is indexed color.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((DIRCOLOR),...

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 8 | Fullword integer

| ADS code = 29 | Fullword integer

DISPLMOD (Display Model)

This PROCOPT lets you specify the size of the display for the workstation.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((DISPLMOD, cccccccc),...

where cccccccc is an 8-character string specifying the display model.

See Display Models for possible values of this PROCOPT.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 16 | Fullword integer

| ADS code = 9 | Fullword integer

| Display model | 8-byte character string

DUMPFLGS (Dump Flags)

This PROCOPT lets you indicate the enabling and disabling of the 5080 workstation diagnostic options.

For specific information on the setting of the dump flag values, see The GDDM/graPHIGS Programming

Interface: Installation and Problem Diagnosis.

Chapter 7. Controlling the Environment with Defaults and Nicknames 205

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((DUMPFLGS, n),...

where n is the desired option value.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 5 | Fullword integer

| 5080 diagnostic options | Fullword integer

DUMPPRFX (Dump Prefix)

This PROCOPT provides the prefix of the file to which 5080 workstation diagnostic data is written.

For specific device information, see The GDDM/graPHIGS Programming Interface: Installation and

Problem Diagnosis.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((DUMPPRFX, cccc),...

where cccc is a 4-character string specifying the file prefix.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 6 | Fullword integer

| File prefix for 5080 diagnostic | 4-byte character string

| data |

EBTES (Edge Bundle Table)

This PROCOPT lets you specify the number of edge bundle table entries.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((EBTES, n),...

where n is the number of edge bundle table entries.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 20 | Fullword integer

| Number of edge bundle table | Fullword integer

| entries |

206 The graPHIGS Programming Interface: Technical Reference

ECHOMETH (Input Echo)

This PROCOPT lets you specify the type of input echoing to be done for NATIVE or X workstations.

For displays with less than 8-bit planes, the default echo is Exclusive-Or on the color table.

With bit plane echoing, the number of available colors is halved and the echo is always white.

With XOR, echoing is implemented by exclusive-or on the color table. For example, with a 16-color, 4-bit

plane device, suppose a locator echo area is filled with color 5 and a rubber-band line prompt/echo type is

selected. This rubber-band line will appear in color 10 (0101 exclusive or’d with 1111 = 1010). In this

instance, you should ensure that color 10 is visible with a background color of 5.

The colors of:

v String input echo

v Valuator input echo

v The locator, stroke, and pick prompts

will not be set by XOR echoing.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((ECHOMETH, n),...

where n is 1 for reserve bit plane or 2 for XOR.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 10 | Fullword integer

| Method of input echoing | Fullword integer

FBUFFER (Frame Buffer Configuration)

This PROCOPT lets you select the number of logical buffers that comprise the physical frame buffer.

Note: This PROCOPT is only supported when running Direct Window Access using the High Performance

3D Color Graphics Processor 8 bit or 24 bit).

By default, if running with Direct Window Access:

v The High Performance 3D Color Graphics Processor with 8 bit planes has a frame buffer consisting of

one buffer of 8 bits.

v The High Performance 3D Color Graphics Processor with 24 bit planes has a frame buffer consisting of

two buffers of 12 bits each.

v The High Performance Graphics Subsystem (Model 730, 8 bit or 24 bit), POWER GtO (8 bit or 24 bit),

and POWER Gt4x (8 bit or 24 bit) has a frame buffer consisting of two buffers of either 8 or 24 bits

each.

If not running with the Direct Window Access: all adapters have a frame buffer consisting of one buffer and

this PROCOPT is ignored.

Chapter 7. Controlling the Environment with Defaults and Nicknames 207

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((FBUFFER, n),...

where n is the number of buffers and may be set to a value of 1 or 2.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 31 | Fullword integer

| Organization of frame buffer | Fullword integer

FONTLIST (Character Font List)

This PROCOPT allows you to specify user-defined character sets as valid character set/font identifiers for

a 5080 workstation.

Specify a list of up to 10 (the maximum allowable) filenames of the symbol definition files of the desired

user-defined character sets. If a filename cannot be found, it will be ignored and no error will be

generated.

Note: All the character sets that the graPHIGS API defines are automatically included and never need to

be specified via the FONTLIST.

Below is an example of the PROCOPT you would use to specify Character Set 229 Font 128, Character

Set 229 Font 129, and Character Set 101 Font 128:

PROCOPT=((FONTLIST,AFME580,AFME581,AFM6580)

Note: When a 5080 workstation is opened, the API also uses these names to determine the sizes of the

desired character sets in order to allocate sufficient storage in the 5085 for them.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((FONTLIST, cccccccc,cccccccc,...),...

where cccccccc is a valid 8-character character set filename.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = n | Fullword integer

| (application dependent) |

| ADS code = 15 | Fullword integer

| Up to 10 font list filenames | n 8-byte character strings

| | .

| | .

FONTPSIZ (Font Pool Size)

For a 5080 workstation, this PROCOPT indicates the maximum number of character sets which can be

active at one time (including the primary character set). Note also the considerations in IBM 5080

Character Set Restrictions.

208 The graPHIGS Programming Interface: Technical Reference

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((FONTPSIZ, n),...

where n is an integer between 1 and 10 (maximum allowable value). If you do not specify FONTPSIZ, a

value of 3 is used.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 14 | Fullword integer

| Number of 5080 maximum active | Fullword integer

| character font sets (1-10) |

HWCURS (Hardware Crosshair Cursor)

This PROCOPT allows you to request the use of the full-screen hardware crosshair cursor provided by the

X cursor extension code in place of the usual crosshair cursor provided by the graPHIGS API (through the

use of the GPCUS subroutine).

The hardware cursor provides a performance improvement over the current crosshair cursor.

Unfortunately, though, the hardware cursor spans the entire display. For applications that normally use

full-screen windows this will not be a problem. For applications that use smaller windows, the user may or

may not wish to use this cursor.

The PROCOPT will be supported on all graPHIGS X workstation types. The X server where the window

will be created must support the X cursor extension in order for this PROCOPT to take effect.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((HWCURS)),...

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 8 | Fullword integer

| ADS code = 39 | Fullword integer

Note: The hardware cursor may also be activated by defining an environment variable (in lieu of using a

PROCOPT). If the gPHWCURS environment variable is defined at the time that the nucleus is

started (in the case of a remote nucleus being started via the gPinit command) or when the

application is started, then when a crosshair cursor is requested (as defined by the GPCUS

subroutine), the full-screen hardware crosshair cursor will be used instead of the regular crosshair

cursor provided by the graPHIGS workstation.

IBTES (Interior Bundle Table)

This PROCOPT lets you specify the number of interior bundle table entries.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((IBTES, n),...

Chapter 7. Controlling the Environment with Defaults and Nicknames 209

where n is the number of interior bundle table entries.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 19 | Fullword integer

| Number of interior bundle table | Fullword integer

| entries |

IMAGEFMT (Image Output Format)

This PROCOPT enables you to define the image format used for output images. The valid formats are

1=PSL1_4BIT, 2=PSL1_8BIT, and 3=IOCA_FS10 where:

v PSL1_4BIT defines a 12 bit per-pixel image in PostScript Level One format

v PSL1_8BIT defines a 24 bit per-pixel image in PostScript Level One format

v IOCA_FS10 defines a one-bit per-pixel image in IBM’s Image Object Content Architecture (IOCA) FS10

format.

The default image format is 1=PSL1_4BIT.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((IMAGEFMT, n),...

where n is an image output format.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 37 | Fullword integer

| Image output format | Fullword integer

KEYBOARD (Language Keyboard)

This PROCOPT lets you specify the keyboard installed for the NATIVE workstation.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((KEYBOARD, n),...

where n is an integer from the following list to identify the keyboard:

 1 = United States English

 2 = United Kingdom English

 3 = German

 4 = French

 5 = Italian

 6 = Japanese

 7 = Swedish

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

210 The graPHIGS Programming Interface: Technical Reference

| Total length of ADS = 12 | Fullword integer

| ADS code = 11 | Fullword integer

| Number that identifies the | Fullword integer

| installed keyboard |

LOCDEVS (Locator Devices)

This PROCOPT lets you specify the number of locator devices for the workstation. The limit for the

number of locator devices is device dependent. For specific device information, see Locator Devices.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((LOCDEVS, n),...

where n is the number of locator devices your workstation is to support.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 3 | Fullword integer

| Number of locator devices | Fullword integer

LSTES (Light Source Table)

This PROCOPT lets you specify the number of light source table entries.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((LSTES, n),...

where n is the number of light source table entries.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 22 | Fullword integer

| Number of light source table | Fullword integer

| entries |

PLBTES (Polyline Bundle Table)

This PROCOPT lets you specify the number of polyline bundle table entries.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((PLBTES, n),...

where n is the number of polyline bundle table entries.

Chapter 7. Controlling the Environment with Defaults and Nicknames 211

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 16 | Fullword integer

| Number of polyline bundle table | Fullword integer

| entries |

PMBTES (Polymarker Bundle Table)

This PROCOPT lets you specify the number of polymarker bundle table entries.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((PMBTES, n),...

where n is the number of polymarker bundle table entries.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 17 | Fullword integer

| Number of polymarker bundle | Fullword integer

| table entries |

PNTHLHSR (Annotation Text and Marker Hidden Line Hidden Surface

Removal)

This PROCOPT enables you to define the coordinate system in which HLHSR of all annotation text and

polymarker primitives will occur. The valid values are 1=VIEWING_COORDINATES and 2=DEVICE_COORDINATES

1=VIEWING_COORDINATES.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((PNTHLHSR, n),...

where n is the primitive’s HLHSR coordinate system.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 38 | Fullword integer

| Primitive’s HLHSR coordinate | Fullword integer

| system |

STRDEVS (String Devices)

This PROCOPT lets you specify the number of string devices for the workstation. For specific device

information, see String Devices.

212 The graPHIGS Programming Interface: Technical Reference

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((STRDEVS, n),...

where n is the number of string devices. The limit for the number of string devices is device dependent.

For specific device information, see String Devices.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 4 | Fullword integer

| Number of string devices | Fullword integer

TXBTES (Text Bundle Table)

This PROCOPT lets you specify the number of text bundle table entries.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((TXBTES, n),...

where n is the number of text bundle table entries.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 18 | Fullword integer

| Number of text bundle table | Fullword integer

| entries |

VWTBLSZ (View Table Entries)

This PROCOPT lets you specify the number of view table entries for the workstation. For specific device

information, see General Workstation Facilities.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((VWTBLSZ, n),...

where n is the number of view table entries. All workstations must have at least one definable view table

entry. Therefore, you must specify VWTBLSZ greater than or equal to 2 (view 0 plus one definable entry).

The maximum limit for the view table size is device dependent.

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

Chapter 7. Controlling the Environment with Defaults and Nicknames 213

| ADS code = 2 | Fullword integer

| Number of view table entries | Fullword integer

XNAME (X Default String)

This PROCOPT lets you specify a name to be used to resolve the defaults in the .Xdefaults file. If this

PROCOPT is not specified, then the graPHIGS API will use the default string ’graPHIGS’ to resolve the

defaults.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((XNAME, cccc),...

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = variable | Fullword integer

| ADS code = 27 | Fullword integer

| Length of default string | Fullword integer

| Default String | Variable length character string

| | padded to a word boundary

XNOCLRMP (Do Not Create an X Color Map)

This PROCOPT lets you specify to not have graPHIGS API create an X color map. This implies that the

application cannot access the color map via graPHIGS API.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((XNOCLRMP),...

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 8 | Fullword integer

| ADS code = 28 | Fullword integer

XWINDASP (Window Aspect Ratio)

This PROCOPT lets you change the aspect ratio of the window to the displayed surface of the X

Workstation. Whenever the graPHIGS API window is resized, the device driver establishes a new display

surface size within that window. This is the largest subarea of the resized X-Window that maintains the

aspect ratio provided by this procopt (or the root window, if XWINDASP PROCOPT is not specified). The

current display contents are scaled uniformly to this new mapped display surface size.

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((XWINDASP, float1,

float2),...

where float1 is the value of the aspect ratio specifying the size in the x direction and float2 is the value of

the aspect ratio specifying the size in the y direction.

214 The graPHIGS Programming Interface: Technical Reference

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 16 | Fullword integer

| ADS code = 30 | Fullword integer

| size of the window (x-direction) | Floating-point number

| size of the window (y-direction) | Floating-point number

XWINDID (X Window Identifier)

This PROCOPT lets you pass a window identifier to the graPHIGS API. The window was created by your

application and the graPHIGS API will use this for the X workstation display window. (See the GPES

subroutine (escape 1018) for information on getting a list of visuals in order to guarantee that the

application’s window will be usable by the graPHIGS nucleus.)

EDF

To specify this PROCOPT through an EDF, the correct syntax is:

 AFMMNICK PROCOPT=((XWINDID, n),...

ADIB

To specify this PROCOPT through an ADIB, the correct structure is:

| Total length of ADS = 12 | Fullword integer

| ADS code = 25 | Fullword integer

| Window Identifier | Fullword integer

PROCOPT Parameters Table

This table summarizes the parameters you can specify with a PROCOPT.

 Table 106. PROCOPT Parameters

Identifier Length Type Name Description Workstations

2 12 Integer VWTBLSZ Number of view

table entries

6090, 5080,

GDDM, NATIVE,

GDF, X, XSOFT,

XPEX, IMAGE

3 12 Integer LOCDEVS Number of locator

devices

6090, 5080,

GDDM, NATIVE,

X, XSOFT, XPEX

4 12 Integer STRDEVS Number of string

devices

6090, 5080,

GDDM, NATIVE,

X, XSOFT, XPEX

5 12 Bit (32) DUMPFLGS Dump flag 5080

6 16 Char (4) DUMPPRFX Dump file prefix 5080

9 16 Char (8) DISPLMOD Monitor model 5080, NATIVE

10 12 Integer ECHOMETH Input device echo

method

NATIVE, X,

XSOFT

11 12 Integer KEYBOARD Keyboard

language

NATIVE

Chapter 7. Controlling the Environment with Defaults and Nicknames 215

Table 106. PROCOPT Parameters (continued)

Identifier Length Type Name Description Workstations

14 12 Integer FONTPSIZ Font pool size 5080

15 16-881 Char (8) FONTLIST Font list 5080

16 12 Integer PLBTES Number of

polyline bundle

table entries

6090, X, XSOFT,

XPEX, IMAGE

17 12 Integer PMBTES Number of

polymarker

bundle table

entries

6090, X, XSOFT,

XPEX, IMAGE

18 12 Integer TXBTES Number of text

bundle table

entries

6090, X, XSOFT,

XPEX, IMAGE

19 12 Integer IBTES Number of interior

bundle table

entries

6090, X, XSOFT,

XPEX, IMAGE

20 12 Integer EBTES Number of edge

bundle table

entries

6090, X, XSOFT,

XPEX, IMAGE

21 12 Integer DCTES Number of depth

cue table entries

6090, X, XSOFT,

XPEX, IMAGE

22 12 Integer LSTES Number of light

source table

entries

6090, X, XSOFT,

XPEX, IMAGE

23 8 CLDEVS Create logical

input devices

even if physical

devices are not

present

6090, X, XSOFT,

XPEX

25 12 Integer XWINDID X workstation

display window

identifier

X, XSOFT, XPEX

27 Variable Char XNAME Name used to

resolve the

defaults in the

.Xdefaults file

X, XSOFT, XPEX

28 8 XNOCLRMP Do not have the

graPHIGS API

create an X color

map

X, XSOFT, XPEX

29 8 DIRCOLOR Initialize

workstation color

map for direct

color

X, XSOFT, XPEX

30 16 Float (2) XWINDASP Initial Aspect

Ratio

X, XSOFT, XPEX

31 12 Integer FBUFFER Number of buffers

that comprise the

frame buffer

X, XPEX

216 The graPHIGS Programming Interface: Technical Reference

Table 106. PROCOPT Parameters (continued)

Identifier Length Type Name Description Workstations

35 16 Integer (2) DCUNITS Device

Coordinate

address units

IMAGE

36 16 Float (2) DCMETERS Device

Coordinate

meters

IMAGE

37 12 Integer IMAGEFMT Image output

format

IMAGE

38 12 Integer PNTHLHSR Primitive’s

HLHSR

Coordinate

system

X, XSOFT,

IMAGE

39 8 Integer HWCURS Hardware

Crosshair Cursor

X, XSOFT

Note:

1 Application-dependent

Chapter 7. Controlling the Environment with Defaults and Nicknames 217

218 The graPHIGS Programming Interface: Technical Reference

Part 4. Character Sets and Fonts

© Copyright IBM Corp. 1994, 2002 219

220 The graPHIGS Programming Interface: Technical Reference

Chapter 8. Character Set Facilities of the graPHIGS API

There are several facilities available for the display of text information:

v Geometric text and annotation text that allow an application to specify a character string that is to be

displayed on a workstation

v Echo of string device input that allows a user to see the input being entered on a string device (for

example, a keyboard).

Your application can specify two attributes that affect the interpretation and display of text information: the

character set identifier (CSID) and the font identifier. When the application specifies a character to be

displayed, the CSID and font identifier together determine the symbol that is displayed to represent the

character.

Identifying a Character Set

A CSID is a number that identifies a set of graphic characters (numbers, letters, and special characters)

that is treated as an entity. For example, a CSID may specify characters that represent the alphabet of a

language (for example, English or Kanji).

Each character within a CSID has assigned to it a code point, which is a unique bit pattern used to

represent the character. For example, the letter ″A″ has been assigned the EBCDIC code point X’C1’ and

the ASCII code point X’41’. Character sets that use 8 bits (1 byte) to represent the character are referred

to as single-byte character sets (SBCS). Character sets that use 16 bits (2 bytes) to represent the

character are referred to as double-byte character sets (DBCS). The code points assigned to letters,

numbers, and certain common symbols follow the EBCDIC or the ASCII encoding sequences.

Character sets can differ from each other in two ways: different sets may vary in the code points used in

the set; they may also vary in the symbol displayed for a given code point.

Your application program specifies CSIDs as integer values. The API divides CSID values into the

following ranges:

 CSID 1 - CSID 100 Reserved for use by IBM for single-byte character sets

CSID 101 - CSID 127 Reserved for your use for single-byte character sets

CSID 128 - CSID 228 Reserved for use by IBM for double-byte character sets

CSID 229 - CSID 255 Reserved for your use for double-byte character sets

Identifying a Font

A font identifier is a number that identifies an appearance of the characters in the character set. For

example, US English (CSID 1) has fonts that display characters in Italic, Script, Gothic, etc.

Fonts differ from each other only in the appearances of the symbols displayed for a given character.

Different fonts within a character set all maintain the same correspondence between characters and code

points.

Within each CSID, the API defines these font identifier values:

 FONT 1 - FONT 127 Reserved for assignment by IBM in IBM-reserved character sets; available for

your use in user-reserved character sets

FONT 128 - FONT 255 Reserved for your use

© Copyright IBM Corp. 1994, 2002 221

Using the Character Set Facilities

Although CSIDs and font identifiers are used with geometric text, annotation text, and input devices, these

facilities have different restrictions in supporting various character sets and fonts.

You can create your own character sets and fonts for use with geometric text; you cannot define your own

character sets and fonts for annotation text and input device processing.

Some workstations may support only one CSID (or one CSID at a time) for annotation text and input

devices.

For input device processing, you may specify only the CSID, not the font identifier.

222 The graPHIGS Programming Interface: Technical Reference

Chapter 9. Character Sets and Fonts Provided by the API

The graPHIGS API provides several character sets in various fonts. In addition, you can create your own

character sets and fonts for use with geometric text. (See User-Definable Fonts for further information.)

This section contains charts of fonts (excluding Hangul, Kanji, Traditional Chinese, Simplified Chinese and

Unicode) supported by the graPHIGS API for the S/390 and operating system. Each chart presents the

actual characters that correspond to each character code in the supported fonts. When using annotation

text, the appearance and, in some cases, the availability of particular characters may vary. Also, only a

subset of the characters can generally be generated by the keyboard or input device for input characters.

Note: For ease of use, nondisplayable characters are represented by a blank (). The space or blank

character is represented by the symbol SP.

Using the Unicode Character Set

The Unicode standard, modeled on the ASCII character set, is a universal set of characters. It includes

characters and common technical symbols from the world’s scripts. The graPHIGS API provides a Unicode

character set (CSID 131), which is a subset of the characters included in the Unicode standard. The

subset includes all characters and symbols supported in other graPHIGS API character sets, with the

exception of a few technical drawing, or engineering, symbols.

The graPHIGS API does not support bidirectional text rendering of Unicode text elements.

The graPHIGS API Unicode text processing does not support non-spacing mark, or ″dead-key″

processing. That is, all elements described in the Unicode standard as non-spacing marks will be treated

as spacing marks and occupy a spacing position by themselves. The graPHIGS application should use

pre-combined character elements, when possible.

Note: See The Unicode Standard, Worldwide Character Encoding Version 1.0, Volume 1,

Addison-Wesley Publishing Company, Inc., 1991, and The Unicode Standard, Worldwide Character

Encoding Version 1.0, Volume 2, Addison-Wesley Publishing.

Proportional character symbol positioning is not supported for Unicode character sets.

Using Kanji Character Sets in the Operating System

For the operating system, the graPHIGS API supports two unique encodings for the Kanji character set.

CSID 128 supports the IBM-932 Japanese encoding, while CSID 134 supports the IBM-943 encoding.

Your application should choose the character set identifier whose encoding best suits your application and

operating system.

In order to accommodate applications that wish to change encodings without making coding changes to

modify the CSID from 128 to 134, the graPHIGS API has provided an environment variable which will map

all occurrences of CSID 128 as if it was coded to CSID 134. That is, when using this environment variable,

although the application is coded as specifying 128, the graPHIGS API will treat it as CSID 134. This

environment variable should be specified as AFM_FORCE_IBM943, if you wish to invoke this behavior. If

the environment variable is not specified, all occurrences of CSID 128 will remain unaffected.

Using this environment variable has severe restrictions. It cannot be used in when the application specifies

a remote nucleus configuration. Also, caution should be taken when modifying or supplementing the

graPHIGS API font files. If AFM_FORCE_IBM943 is specified, the graPHIGS API will use the CSID 134

font files, namely, afm86.sym and afm8601.sym. Since the application is coded to use CSID 128 in this

© Copyright IBM Corp. 1994, 2002 223

case, the application should insure that there are no user-defined font files intended to supplement the

CSID 128 font files, afm80.sym and afm8001.sym, which will no longer be referenced.

Character Code Points and Symbols

The graPHIGS API provides these fonts with characters mapped to the EBCDIC or ASCII standard:

 Table 107. Available Fonts

CSID 1 - US English FONT 1 graPHIGS Default

FONT 2 Complex Roman

FONT 3 Complex Italian

FONT 4 Complex Script

FONT 5 Duplex Roman

FONT 6 Gothic English

FONT 7 Gothic German

FONT 8 Gothic Roman

FONT 9 Simplex Roman

FONT 10 Triplex Italic

FONT 11 Triplex Roman

FONT 12 Filled

FONT 13 Proportional

FONT 14 Filled-Proportional

CSID 2 - UK English FONT 1 graPHIGS Default

CSID 3 - German FONT 1 graPHIGS Default

CSID 4 - French FONT 1 graPHIGS Default

CSID 5 - Italian FONT 1 graPHIGS Default

CSID 6 - Japanese Katakana FONT 1 graPHIGS Default

FONT 2

CSID 7 - Swedish FONT 1 graPHIGS Default

CSID 8 - Multinational FONT 1 graPHIGS Default

CSID 9 - Single-byte Korean FONT 1 graPHIGS Default

CSID 10 - ISO 8859-1 (Latin 1)

CSID 11 - ISO 8859-23 FONT 1 graPHIGS Default

CSID 12 - ISO 8859-5 Cyrillic4 FONT 1 graPHIGS Default

CSID 128 - Japanese Kanji (IBM-932 encoding)2 FONT 1 graPHIGS Default

CSID 129 - Hangul5 FONT 1 graPHIGS Default

CSID 130 - Traditional Chinese1, 6 FONT 1 graPHIGS Default

CSID 131 - Unicode FONT 1 graPHIGS Default

CSID 132 - Simplified Chinese1, 7 FONT 1 graPHIGS Default

CSID 134 - Japanese Kanji (IBM-943 encoding)1 FONT 1 graPHIGS Default

Notes:

1. CSIDs 130, 132, and 134 are not supported in the EBCDIC environment.

2.

v For all 5085 feature models, the feature code is 2986 (S/390 systems).

v For 5086 models, the feature codes are 4111 (S/390 systems), 4222 (Kanji ROS), and 4651

(graphic keyboard). Customers in Japan specify feature code 2973 for the graphic keyboard rather

than feature code 4651.

v On the NATIVE workstations, Kanji input requires the NATIVE AIX GSL Japanese Language Support

and the Japanese keyboard.

224 The graPHIGS Programming Interface: Technical Reference

3. CSID 11, iso8859-2, is only valid when you are using the Czech locale, cs_CZ.

4. CSID 12, Cyrillic is only valid when you are using the Cyrillic locale, ru_RU.

5. Hanja characters are not supported. For the 5080 Workstation, Hangul requires models with NLS

microcode and the HGC utility.

6. For Traditional Chinese, the graPHIGS API provides this font with characters mapped only to ASCII

code points. The code points follow the IBM-927 Corporate Specification (PS/55 double-byte only code

structure). For details, see AIX Chinese Code Book.

7. For Simplified Chinese, the graPHIGS API provides this font with characters mapped only to ASCII

code points. The encoding for the font is the IBM CH-S DBCS_EUC GB 2312 set.

Figure 6. (EBCDIC) US English Character Set (1). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 225

Figure 7. (ASCII) US English Character Set (1). Font 1 (Primary)

Figure 8. (EBCDIC) US English Character Set (1). Font 2 (Complex Roman)

226 The graPHIGS Programming Interface: Technical Reference

Figure 9. (ASCII) US English Character Set (1). Font 2 (Complex Roman)

Chapter 9. Character Sets and Fonts Provided by the API 227

Figure 10. (EBCDIC) US English Character Set (1). Font 3 (Complex Italic)

Figure 11. (ASCII) US English Character Set (1). Font 3 (Complex Italic)

228 The graPHIGS Programming Interface: Technical Reference

Figure 12. (EBCDIC) US English Character Set (1). Font 4 (Complex Script)

Chapter 9. Character Sets and Fonts Provided by the API 229

Figure 13. (ASCII) US English Character Set (1). Font 4 (Complex Script)

Figure 14. (EBCDIC) US English Character Set (1). Font 5 (Duplex Roman)

230 The graPHIGS Programming Interface: Technical Reference

Figure 15. (ASCII) US English Character Set (1). Font 5 (Duplex Roman)

Chapter 9. Character Sets and Fonts Provided by the API 231

Figure 16. (EBCDIC) US English Character Set (1). Font 6 (Gothic English)

Figure 17. (ASCII) US English Character Set (1). Font 6 (Gothic English)

232 The graPHIGS Programming Interface: Technical Reference

Figure 18. (EBCDIC) US English Character Set (1). Font 7 (Gothic German).

Chapter 9. Character Sets and Fonts Provided by the API 233

Figure 19. (ASCII) US English Character Set (1). Font 7 (Gothic German)

Figure 20. (EBCDIC) US English Character Set (1). Font 8 (Gothic Italic)

234 The graPHIGS Programming Interface: Technical Reference

Figure 21. (ASCII) US English Character Set (1). Font 8 (Gothic Italic)

Chapter 9. Character Sets and Fonts Provided by the API 235

Figure 22. (EBCDIC) US English Character Set (1). Font 9 (Simplex Roman)

Figure 23. (ASCII) US English Character Set (1). Font 9 (Simplex Roman)

236 The graPHIGS Programming Interface: Technical Reference

Figure 24. (EBCDIC) US English Character Set (1). Font 10 (Triplex Italic)

Chapter 9. Character Sets and Fonts Provided by the API 237

Figure 25. (ASCII) US English Character Set (1). Font 10 (Triplex Italic)

Figure 26. (EBCDIC) US English Character Set (1). Font 11 (Triplex Roman)

238 The graPHIGS Programming Interface: Technical Reference

Figure 27. (ASCII) US English Character Set (1). Font 11 (Triplex Roman)

Chapter 9. Character Sets and Fonts Provided by the API 239

Figure 28. (EBCDIC) US English Character Set (1), Font 12 (Filled), Font 13 (Proportional), Font 14

(Filled-Proportional)

240 The graPHIGS Programming Interface: Technical Reference

Figure 29. (ASCII) US English Character Set (1), Font 12 (Filled), Font 13 (Proportional), Font 14 (Filled-Proportional)

Figure 30. (EBCDIC) UK English Character Set (2). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 241

Figure 31. (ASCII) UK English Character Set (2). Font 1 (Primary).

242 The graPHIGS Programming Interface: Technical Reference

Figure 32. (EBCDIC) German Character Set (3). Font 1 (Primary)

Figure 33. (ASCII) German Character Set (3). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 243

Figure 34. (EBCDIC) French Character Set (4). Font 1 (Primary)

244 The graPHIGS Programming Interface: Technical Reference

Figure 35. (ASCII) French Character Set (4). Font 1 (Primary)

Figure 36. (EBCDIC) Italian Character Set (5). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 245

Figure 37. (ASCII) Italian Character Set (5). Font 1 (Primary)

246 The graPHIGS Programming Interface: Technical Reference

Figure 38. (EBCDIC) Katakana Character Set (6). Font 1 (Primary).

Figure 39. (ASCII) Katakana Character Set (6). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 247

Figure 40. (EBCDIC) Katakana Character Set (6). Font 2

248 The graPHIGS Programming Interface: Technical Reference

Figure 41. (ASCII) Katakana Character Set (6). Font 2

Figure 42. (EBCDIC) Swedish Character Set (7). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 249

Figure 43. (ASCII) Swedish Character Set (7). Font 1 (Primary)

250 The graPHIGS Programming Interface: Technical Reference

Figure 44. (EBCDIC) Multi-Language Character Set (8). Font 1 (Primary)

Figure 45. (ASCII) Multi-Language Character Set (8). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 251

Figure 46. (EBCDIC) Single-Byte Korean (9). Font 1 (Primary)

252 The graPHIGS Programming Interface: Technical Reference

Figure 47. (ASCII) Single-Byte Korean (9). Font 1 (Primary)

Figure 48. (EBCDIC) ISO 8859-1 (Latin 1) Character Set (10). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 253

Figure 49. (ASCII) ISO 8859-1 (Latin 1) Character Set (10). Font 1 (Primary)

254 The graPHIGS Programming Interface: Technical Reference

Figure 50. (ASCII) ISO 8859-2 Character Set (11). Font 1 (Primary)

Chapter 9. Character Sets and Fonts Provided by the API 255

Figure 51. (ASCII) ISO 8859-5 Cyrillic Character Set (12). Font 1 (Primary)

256 The graPHIGS Programming Interface: Technical Reference

Chapter 10. User-Definable Fonts

You can define your own symbols to display geometric text for use with the graPHIGS API. See Character

Sets and Fonts Provided by the API for a detailed explanation of CSIDs and fonts.

If you are defining fonts to be used on the IBM 5080, be sure to read IBM 5080 Character Set

Restrictions.

Defining Your Own Characters

Your application can specify a character string to be displayed in geometric text. The graPHIGS API, in

processing that character string, accesses two files to get the information necessary to interpret and

display the text:

v A character set file containing information about a particular character set. The contents of the character

set file tell:

– The available EBCDIC and ASCII code points of the character set

– The translation between EBCDIC and ASCII

– The default character used when a character string contains characters not defined in the file

– The index that is used to locate the symbol in a symbol file

There is only one character set file for a particular character set identifier.

v A symbol file containing the drawing controls for each symbol that is displayed to represent the

character. There is a symbol file for each available font within a particular character set.

By creating new files, you can create your own character sets and fonts for use by the graPHIGS API.

Your character sets and fonts should be assigned a unique character set identifier within the range

specified for your use. See Identifying a Character Set for more information.

Your application program specifies CSIDs as integer values. The API divides CSID values into the

following ranges:

 CSID 1 - CSID 100 Reserved for use by IBM for single-byte character sets

CSID 101 - CSID 127 Reserved for your use for single-byte character sets

CSID 128 - CSID 228 Reserved for use by IBM for double-byte character sets

CSID 229 - CSID 255 Reserved for your use or for double-byte character sets

The graPHIGS API provides many character set files and symbol files. You should not modify the

IBM-supplied files. The installation of new releases causes the IBM-supplied files to be loaded to your

installation disk, replacing the current files. New releases may contain corrections to errors or may provide

additional fonts for existing character sets. If you modify the IBM-supplied files, you will lose your changes

when the next release is installed. If you wish to modify the IBM-supplied character set and symbol files,

copy them to separate files and use the copies to create user-defined character sets and fonts.

IBM-supplied, double-byte character sets have exceptions to this rule. See Creating New Double-Byte

Code Points for more information.

Font Editor

For your convenience, the Personal graPHIGS product on the RS/6000 provides a basic font editor. The

font editor allows you to create and modify characters in font files. The font editor is found in the directory:

 /usr/lpp/graPHIGS/clients/fonteditor

See the README files in the directory for instructions on use of the font editor.

© Copyright IBM Corp. 1994, 2002 257

Assigning ASCII and EBCDIC Code Points

Assignable code points of a character set must be within the ranges shown in the following table:

 Table 108. Range of Assignable Code Points

Assigned Byte Code Point in EBCDIC Code Point in ASCII

Single-byte of SBCS X’40’ to X’FE’ X’20’ to X’FF’

Both bytes of DBCS X’40’ to X’FE’ X’20’ to X’FF’

Both bytes of Unicode DBCS X’00’ to X’FF’ X’00’ to X’FF’

Translation Tables

If you create your own character sets, you should provide the translation tables for EBCDIC and ASCII.

Though your current application needs may be only for one encoding (such as EBCDIC), your future

requirements may use the character set and font files in other environments. Specifying both the EBCDIC

and ASCII organizations and the corresponding translations will eliminate rework of your files for such a

conversion. If your character set doesn’t follow a standard EBCDIC or ASCII definition, you could assign

the same code point for both the EBCDIC and ASCII tables.

Font Considerations

If you are creating your own font within a character set, ensure that you define a symbol for every

character in the set you are working with, and that the character maintains its meaning.

If you wish to add or delete characters, move characters to different code points, or change the meaning

of the code point, create a new character set for the font.

Creating New Double-Byte Code Points

Double-byte character sets (DBCS) have user-definable subareas of the code point range where you may

create additional characters.

The ranges of these sub-areas are shown in the following table:

 Table 109. User-assignable Code Point Ranges for Kanji, Hangul, Chinese, and Unicode

Encoding First byte Second byte

Kanji (EBCDIC) X’69’ to X’7F’ X’40’ to X’FE’

Kanji (ASCII) (CSIDs 128 and 134) X’F0’ to X’F9’ X’40’ to X’FC’

Hangul (ASCII)2 X’8F’ to X’A0’ X’20’ to X’FF’

Hangul (EBCDIC)2 X’D4’ to X’DD’ X’40’ to X’FE’

Traditional Chinese (ASCII) X’DB’ to X’FB’ X’40’ to X’7E’

X’80’ to X’FC’

258 The graPHIGS Programming Interface: Technical Reference

Table 109. User-assignable Code Point Ranges for Kanji, Hangul, Chinese, and Unicode (continued)

Encoding First byte Second byte

Simplified Chinese (ASCII) X’A2’

X’A2’

X’A2’

X’A2’

X’A4’

X’A5’

X’A6’

X’A6’

X’A7’

X’A7’

X’A8’

X’A8’

X’A9’

X’A9’

X’AA’ to X’AF’

X’D7’

X’F8’ to X’FD’

X’FE’

X’A1’ to X’B0’

X’E3’ to X’E4’

X’EF’ to X’F0’

X’FD’ to X’FE’

X’F4’ to X’FE’

X’F7’ to X’FE’

X’B9’ to X’C0’

X’D9’ to X’FE’

X’C2’ to X’D0’

X’F2’ to X’FE’

X’BB’ to X’C4’

X’EA’ to X’FE’

X’A1’ to X’A3’

X’F0’ to X’FE’

X’A1’ to X’FE’

X’FA’ to X’FE’

X’A1’ to X’FE’

X’A1’ to X’DF’

Unicode1 X’E0’ to X’F7’ X’00’ to X’FF’

Notes:

1. The Unicode standard defines a Private Use Area. By convention, the Private Use Area is divided into

a Corporate Use Zone, starting at 0xF7FF and decreasing in values, and an End User Zone, starting

at 0xE000 and increasing in values.

2. For Hangul there are 1880 user-definable characters in the S/390 environment, but only 188 are used

by the graPHIGS API because the 5086 workstation is based on the KSC5601-87 code set.

The graPHIGS API supplies two methods for you to define characters for the user-definable ranges of

double-byte character sets:

v Add new character definitions to the existing IBM-supplied character set and font files.

v Create a character set and font files for just the user-definable subarea. The graPHIGS API could then

use these new files in conjunction with the IBM-supplied double-byte files.

Method 1

Alter the IBM-supplied character set files by adding characters in the user-definable range. You must also

update the two translation tables for translating between EBCDIC and ASCII, except for the Unicode

character set which has no translation table. These altered IBM files then become unique to your

application.

Method 2

Create a new character set and font files for just the user-assignable code points you wish to define.

These files may then be combined with the IBM-supplied files by the graPHIGS API. This method has

particular advantages pertaining to the graPHIGS API shell and nucleus organization. (See The graPHIGS

Programming Interface: Understanding Concepts for discussions of the shell-nucleus organization.) With

this method, all applications running to a particular nucleus can share the common IBM-supplied files, yet

each application can have a unique set of files defining some set of the user-assignable codepoints

installed on the application’s disk.

The IBM-defined double-byte files should be installed on the nucleus font disk. The user-defined files

should be on the application’s disk.

To use a double-byte character set on a workstation:

1. Create a font directory with the Create Font Directory (GPCRFD) subroutine

Chapter 10. User-Definable Fonts 259

2. Associate it with the workstation specified with the Associate Font Directory with Workstation

(GPAFDW) subroutine

3. Load the user-defined font with Load Font (GPLDFO) subroutine

4. Activate the font with the Activate Font (GPACFO) subroutine.

When receiving the activate font request, the graPHIGS API nucleus searches in the associated font

directory for the font files. If the nucleus finds the user-defined files in the associated font directory, then it

searches for the IBM-defined files on the nucleus’ disk. It then activates the font and includes both the IBM

ranges and the user-defined ranges. Therefore, each application can ensure that the activated font

includes its own user-defined codepoints. The IBM-defined font is always taken from the nucleus font disk

and the application need not send it from the shell side.

When creating user-defined characters for Traditional Chinese, be aware that the graPHIGS API processes

code points as IBM-927 double-byte encoding, not the Traditional Chinese IBM-EUC encoding.

Displaying a Text String

This section explains the relationship between the information in a symbol file and the display of a text

string. The text string appearance is defined by the font characteristics specified in the symbol file and the

geometric text attributes.

For example, the alignment attribute allows your application to specify a positioning line on which to

position the entire text extent rectangle relative to the text position (see Text Extent Rectangle for an

explanation of the text extent rectangle). The positioning line is specified by the attribute and the value of

the positioning line is in the symbol file. The graPHIGS API uses both the symbol file description and the

attributes to control text position, alignment, height and width. The following sections describe the symbol

file contents and illustrate how it relates to geometric text attributes.

Note: For illustration purposes, all diagrams contain proportional sized character boxes.

Font Description Coordinate System

The shape of each symbol representing a character is defined in its own local, two dimensional, Cartesian

font coordinate system. The intersection of the x- and y-axes in this coordinate system is called the font

coordinate origin.

Each character in a font coordinate system has a character box composed of the character body (topline,

bottomline, rightline and leftline), baseline, halfline, capline and centerline. Character box characteristics

are defined in relation to the font coordinate origin (the intersection of the x- and y-axes). The following

diagram describes the character box about a local font coordinate system:

260 The graPHIGS Programming Interface: Technical Reference

The rectangle that bounds the character box, called the character body, is defined by four values named

TOP, BOT, RIGHT and LEFT. Each value is a signed value relative to the local coordinate system origin.

A font contains character box definitions where the baseline, halfline, capline and centerline are fixed per

font. The baseline and centerline correspond respectively to the x- and y-axes of a character’s local font

coordinate system. The capline is specified per font and the halfline is midway between the baseline and

the capline.

Fixed-sized fonts have the character body, TOP, BOT, RIGHT and LEFT specified once for the entire font.

Proportionally-spaced fonts also have a character body dimension for each character.

Symbol Position and Inter-Symbol Alignment

The character body is used to position a character relative to other characters within a text string. The

TOP, BOT, RIGHT and LEFT values are used to position adjacent characters with their bodies touching. For

example, in a text string with text path right and no additional space between character bodies, the right

edge of each character body will be co-linear with the left edge of the character body to its immediate

right.

Characters within a text string are aligned along each character’s baseline or centerline. All the origins are

co-linear along a line that is parallel to the text path direction.

Characters are defined within the character body boundaries but they may exceed the boundaries. For

example, a kern or oversized character like the integral sign may exceed the boundaries. All character

positioning is performed on the character body not on the character extents, which may exceed the

character body.

Figure 52. Character box about a local font coordinate system. This illustration shows a character box containing the

upper-case letter D. The D is horizontally centered about a Y-axis. An X-axis forms the baseline of the D. Listed from

top to bottom and positioned just outside and to the right of the character box are the following callouts: Topline,

Capline, Halfline, Baseline, and Bottomline. The D is contained within the capline and baseline and is centered about

the halfline. Along the bottom of the character box and positioned from left to right are the following callouts: Leftline,

Centerline, and Rightline, which denote the vertical reference points of the character box.

Chapter 10. User-Definable Fonts 261

Text Extent Rectangle

The text extent rectangle is the minimum rectangle which completely encloses all the character extent

rectangles in a string. The character extent rectangle has dimensions similar to the character body, TOP,

BOT, RIGHT and LEFT. Conceptually, there is a character extent rectangle for each character. The character

extent rectangle and the character body will be defined by the same parameters.

Calculation of the vertical and horizontal components of the text extent rectangle involves calculating the

maximum dimensions in a text string. For example, the text extent for path right or left is the left-most

leftline, right-most rightline, maximum topline and the minimum bottomline.

Location of a text extent rectangle

 ------

 | | -------------

 | |------| |

 | |------| |

 | | -------------

 | | .<---Text extent rectangle

 ------

Text Alignment

Text alignment is calculated relative to the text extent rectangle. The horizontal component of text

alignment has three values: RIGHT_ALIGN, LEFT_ALIGN and CENTER. The vertical component has five values:

TOP, CAP, HALF, BASE and BOTTOM.

Notice where these values lie when you specify a horizontal alignment, as shown in the figure below:

When your application specifies a vertical alignment, as shown in the following figure, notice:

Figure 53. . This illustration shows how horizontal alignment can affect characters.

262 The graPHIGS Programming Interface: Technical Reference

v Halfline specification aligns the midpoint between the top-most character’s halfline and the bottom-most

character’s halfline with the text position.

v Centerline specification aligns along the centerline or Y axis passing through all the character extent

rectangles.

Mapping Font Coordinates to Modeling Coordinates

The graPHIGS API displays text strings by mapping the local font coordinates of each symbol to modeling

coordinates. The application specifies the character height in modeling coordinates. The height of the font

in the font coordinate system is mapped to the height specified in modeling coordinates. The ratio between

the font height to the modeling height is multiplied by the expansion factor and the font width produce the

width. The following diagram illustrates the relationship between local font coordinates and modeling

coordinates:

Figure 54. Alignment of a text string specified with path up or down. This illustration shows how vertical alignment can

affect characters.

Chapter 10. User-Definable Fonts 263

Font File Organization Overview

This section describes the file organization used to map a code point to its drawing controls.

Single-Byte Character Sets

Each single-byte character set (SBCS) and font combination consists of two files, the SBCS file and the

Symbol Definition file.

The SBCS file contains ASCII and EBCDIC code point indexes that map code points to symbol IDs. (The

symbol ID serves as a generic name for a symbol that is independent of an encoding scheme such as

ASCII or EBCDIC.) The Symbol Definition file contains a symbol ID table that maps symbol IDs to their

drawing controls.

The complete process from code point to drawing controls begins with the code point, which maps to a

symbol ID that in turn identifies a location where the drawing controls for that symbol ID are found. The

following diagram shows this flow in relationship to the files.

 SBCS File Symbol Definition File

 Header----------- Header -----------

 | | | |

 | | | |

------------- |---------| |---------|

| ASCII Code| | |------ Symbol| |

| Point |----->| | | ID Index| |

------------- ASCII| | v | |

 Index| | | | |

-------------- |---------| |---------->| |

| EBCDIC Code| | | ^ |---------|

Figure 55. Relationship between Local Font Coordinates and Modeling Coordinates. This illustration shows the

relationship between local font coordinates and modeling coordinates.

264 The graPHIGS Programming Interface: Technical Reference

| Point |---->| |-----| Symbol| |

-------------- | | Defs | |

 BCDIC| | | |

 Index| | | |

 | | | |

 ----------- -----------

Single-Byte SBCS and Symbol Definition Files

Single-byte ASCII and EBCDIC code points

having the same symbol ID will map to the same drawing controls.

Double-Byte Character Sets

Each double-byte character set (DBCS) and font combination consists of 2 files, the DBCS file and the

Symbol Definition file.

The DBCS file contains ASCII and EBCDIC code point indexes that map code points to symbol IDs. (The

symbol ID serves as a generic name for a symbol that is independent of an encoding scheme such as

ASCII or EBCDIC.) The Symbol Definition file contains a symbol ID table that maps symbol IDs to their

drawing controls.

The double-byte character set file has two levels of in-direction. The first byte of the code point (’B1’) is

used as an index into a table, called the B1 table. The B1 table contains the addresses of tables indexed

by the second byte of the code point (’B2’), called the B2 tables. The entry in the B2 table contains a

symbol ID.

The complete process from code point to drawing controls begins with the code point, which maps to a

symbol ID (using two levels of in-direction), that in turn identifies a location where the drawing controls for

that symbol ID are found.

The following example shows this flow in relationship to the files.

 DBCS File Symbol Definition Files

 Header----------- Header-----------

 | | | |

 | | | |

 |---------| |---------|

 ASCII | | Symbol| |

 ASCII Code Point B1 Index | | ID Index| |

 | | | |

 |------------------------>| |--- | |

 ----------- | | | | |

 | B1 | B2 | ----------- | | |

 ----------- ----------- | | |

 | | | | | |

 | ASCII | | | | |

 | B2 Index | | | | |

 | ----------- | | |

 | . | | |

 | . | | |

 | ----------- | | |

 | | |<-- | |

 |-------------------> | |----------------->| |

 ASCII | | | | |

 B2 Index | | | |---------|

 ----------- | | |

 ----------- | Symbol| |

 EBCDIC Code Point EBCDIC | | | Defns| |-----

 B1 Index | | ^ | | |

 |-------------------------->| |--- | | | |

 ----------- | | | | | | |

 | B1 | B2 | | | | | | | |

 ----------- ----------- | | | | |

Chapter 10. User-Definable Fonts 265

| ----------- | | | | |

 |-------------------->| |<-- | | | |

 EBCDIC| | | | | |

 B2 Index | |------- | | |

 ----------- | | |

 . | |<----

 ----------- | |

 EBCDIC | | | |

 B2 Index | | | |

 | | | |

 ----------- | |

Double-Byte DBCS and Symbol Definition Files

Double-byte ASCII and EBCDIC Code Points

having the same symbol ID maps to the same drawing controls.

Overview of Font File Contents

Character Set Files

The Single-Byte Character Set (SBCS) files and the Double-Byte Character Set (DBCS) files are unique

per character set. The information in these files varies depending on whether it is for a single-byte or

double-byte character set.

Header

The SBCS files and the DBCS files each have a fixed-length header which is located at the beginning of

the file and contains control information. Header information includes:

v Font File Version Identifier

– This identifies the format of the font file to the graPHIGS API.

v ASCII and EBCDIC Default characters

– You do not need to define all characters in a character set. Each character set contains a symbol

called the default character that is displayed when your application references an undefined

character.

v Offsets to tables

– These are offsets to variable-length tables which follow the header. All offsets are from the start of

the variable data.

v Starting and last character codes

– This is the range of character codepoints for a SBCS and the range of the first byte of the

codepoints for a DBCS.

Variable Data

Variable data in the SBCS files and the DBCS files begins immediately after the header. The graPHIGS

API accesses this part of the file by using the offsets and ranges in the header. The variable data may

include:

v ASCII and EBCDIC Character Code Tables

– These tables are in the SBCS files, and contain symbol IDs.

v ASCII and EBCDIC B1 Tables

– These tables are in the DBCS files, and contain offsets to the B2 tables.

v ASCII and EBCDIC B2 Tables

– These tables are in the DBCS files. The tables contain range values for the second byte of a

double-byte codepoint, and symbol IDs for that range.

v Translation Tables

266 The graPHIGS Programming Interface: Technical Reference

– Two translation tables translate character codes from ASCII to EBCDIC and EBCDIC to ASCII.

Symbol Definition File

The Symbol Definition files are unique per font within a character set.

Header

The file contains a fixed length header which includes:

v Font File Version Identifier

– This identifies the format of the symbol definition file to the graPHIGS API.

v Character box and clipping boundaries

– Nominal character box values are used for text alignment. Clipping box values are used for clipping

and trivial accept/reject.

v Offsets

– These are the offsets that the graPHIGS API uses to locate (in the variable data) the symbol ID

index and the symbol definitions. All offsets are from the start of the variable data, which begins

immediately after the header.

v Starting and last symbol ID

– This is the range of symbol IDs for this font.

Variable Data

Variable data in the Symbol Definition files begins just after the header. The graPHIGS API accesses this

part of the file by using the offsets and ranges in the header. The variable data includes:

v Symbol ID index

– This table contains an entry for every symbol ID in the range given in the header. Each entry

contains information pertaining to a symbol ID, including an offset to the drawing controls.

v Symbol Definitions

– This is a collection of the drawing controls for each symbol.

Font File Naming Conventions

When the graPHIGS API receives a request to activate (Activate Font - GPACFO) or load (Load Font -

GPLDFO) a character set and font, it attempts to load either the SBCS or DBCS file and the Symbol

Definition file. The filenames that the software expects for these files differ according to your environment:

AIX, MVS, or VM.

Character Set Files

Use the following tables to ensure that your filenames are correct for your environment and/or the load

option for the GPLDFO subroutine.

Each character set identifier has one SBCS/DBCS file that contains the ASCII/EBCDIC index and the

translate tables. The graPHIGS API attempts to load the SBCS/DBCS file according to the naming

convention. The graPHIGS API also attempts to load the user-defined subareas of double-byte character

sets, according to the naming convention.

 Table 110. SBCS/DBCS File-Naming Convention on AIX, MVS, and VM

VM MVS AIX

1. Filename ’AFMcc ’ 2. PDS member’AFMcc ’ 3. Filename ’afmcc.sym’

4. Filetype ’AFMSYMBL’ 5. DDNAME ’AFMSYMBL’

Note: cc = Character set identifier in hexadecimal; see Identifying a Character Set.

Chapter 10. User-Definable Fonts 267

Table 111. Naming Convention on AIX, MVS, and VM for User-Defined DBCS

VM MVS AIX

1. Filename ’UDFcc ’ 2. PDS member’UDFcc ’ 3. Filename ’udfcc.sym’

4. Filetype ’AFMSYMBL’ 5. DDNAME ’AFMSYMBL’

Notes:

1. cc = Character set identifier in hexadecimal; see Identifying a Character Set

2. CSIDs 130, 132 and 134 are only supported in the operating system environment.

Symbol Definition Files

If the SBCS/DBCS file loads successfully, then the graPHIGS API attempts to load the respective Symbol

Definition file according to the naming convention in the following table. For IBM-supplied double-byte

symbol files, the API also attempts to load the user-defined range, according to the naming convention in

the following user-defined table.

 Table 112. Symbol Definition File Naming Conventions on AIX, MVS, and VM

VM MVS AIX

1. Filename ’AFMccff ’ 2. PDS member’AFMccff ’ 3. Filename ’afmccff.sym’

4. Filetype ’AFMSYMBL’ 5. DDNAME ’AFMSYMBL’

Note:

cc = Character set identifier in hexadecimal; See Identifying a Character Set.

ff = Font identifier in hexadecimal

 Table 113. Naming Convention on AIX, MVS, and VM for User-Defined Symbol Definition File

VM MVS AIX

1. Filename ’UDFccff ’ 2. PDS member’UDFccff ’ 3. Filename ’udfccff.sym’

4. Filetype ’AFMSYMBL’ 5. DDNAME ’AFMSYMBL’

Note:

cc = Character set identifier in hexadecimal; See Identifying a Character Set.

ff = Font identifier in hexadecimal

CSIDs 130, 132 and 134 are only supported in the operating system environment.

Font File Format Specifications

This section provides tabular summaries of file format and notes on the contents of these three files:

v Single-Byte Character Set (SBCS) file

v Double-Byte Character Set (DBCS) file

v Symbol Definition file

The internal file format is binary on all environments. On VM and MVS, all files are four hundred byte fixed

length records.

Refer to the tables for information on byte offset, field length, field content, or brief descriptions of these

characteristics.

268 The graPHIGS Programming Interface: Technical Reference

The notes following each table, field content descriptions, give you more details on the content of the fields

in the file, along with special considerations, restrictions, and usage.

Notes:

1. A “V” in the length field indicates variable-length.

2. All reserved fields in the font files must be initialized to zero.

Single-Byte Character Set File Format

 Table 114. Single-Byte Character Set File Format

Byte Field Length Field Content Description

0 1 VERSION Font file version identifier

1 1 RESERVED

2 1 FLAGS Bits are on to indicate:

0 ASCII Index

present

1 EBCDIC Index

present

2 ASCII to EBCDIC

translation table

present

3 EBCDIC to ASCII

translation table

present

4-7 Reserved

3 1 RESERVED

4 4 LENGTH Total length of file, all fields

8 2 ASCII DEF ASCII default character

code

10 1 ASCII CP0 Starting ASCII character

code

11 1 ASCII CPN Last ASCII character code

12 4 ASCII CHAR INDEX

OFFSET

Offset of ASCII CHAR

INDEX

16 4 ASCII —> EBCDIC

OFFSET

Offset of ASCII to EBCDIC

translation table

20 2 EBCDIC DEF EBCDIC default character

code

22 1 EBCDIC CP0 Starting EBCDIC character

code

23 1 EBCDIC CPN Last EBCDIC character

code

24 4 EBCDIC CHAR INDEX

OFFSET

Offset of EBCDIC CHAR

INDEX

28 4 EBCDIC —> ASCII

OFFSET

Offset of EBCDIC to ASCII

translation table

Chapter 10. User-Definable Fonts 269

Table 114. Single-Byte Character Set File Format (continued)

Byte Field Length Field Content Description

32 LENGTH DATA

V ASCII CHAR INDEX 2 byte symbol IDs

EBCDIC CHAR INDEX 2 byte symbol IDs

ASCII —> EBCDIC Table to translate from

ASCII to EBCDIC 1 byte

character codes

EBCDIC —> ASCII Table to translate from

EBCDIC to ASCII 1 byte

character codes

Field Content Description

v VERSION

– The version identifier for this format is X’01’.

v FLAGS

– ASCII Index flag

- This flag is on to indicate that an ASCII index has been specified for this character set.

– EBCDIC Index flag

- This flag is on to indicate that an EBCDIC index has been specified for this character set.

– ASCII to EBCDIC translation table flag

- This flag is on to indicate that the ASCII to EBCDIC translation table has been specified for this

character set.

– EBCDIC to ASCII translation table flag

- This flag is on to indicate that the EBCDIC to ASCII translation table has been specified for this

character set.

v DEF (ASCII and EBCDIC)

– Character code used when a request is made for a character code outside the range CP0-CPN, or

those with an index value of zero. The default must be a defined character code.

– The default character on the 5080 will be ignored; it is always the hyphen.

– For a single-byte character set, the first byte of the character code is zero and the second byte is the

default character code, e.g., X’00cc’.

v OFFSET (All table offset fields)

– The location of variable length tables are specified by an offset into the file that is relative to the start

of the variable length data. For example, the first table after the header is at offset zero.

v CP0 and CPN (ASCII and EBCDIC)

– The range of character code points start at CP0 and end at CPN.

– You do not have to specify both an ASCII and EBCDIC index. If you do not specify one of the

indices, make sure that the corresponding ASCII/EBCDIC flag is off to indicate that an index has not

been included.

– With the exception of the Unicode character set (CSID 131), valid character code ranges for CP0 to

CPN are between X’20’ and X’FF’ for ASCII and X’40’ and X’FE’ for EBCDIC. The graPHIGS API

ignores all character codes in the range X’00’ to X’1F’ for ASCII, and X’00’ to X’3F’ and X’FF’ for

EBCDIC. The graPHIGS API, however, recognizes the full range of character codes X’00’ to X’FF’ for

the Unicode character set.

v CHAR INDEX (ASCII and EBCDIC)

– Character index is an array of symbol IDs. A symbol ID is a two-byte positive integer.

270 The graPHIGS Programming Interface: Technical Reference

– Even if you do not define all the characters, this index must be complete between CP0-CPN. You

must set the character index for undefined characters to zero, in order to indicate non-supported

characters to the API.

v ASCII > EBCDIC translation table

– This table converts an ASCII character code to the corresponding EBCDIC character code.

– The translation table is not provided for the Unicode character set (CSID 131). The ASCII and

EBCDIC code points are identical.

– The translation table is an array of one byte character codes. The following illustrates the translation

table format:

 Table 115. ASCII <—> EBCDIC Translation

Field Length Field Content Description

1 CP0 Starting character code

1 CPN Last character code

V CODE POINTS 1 byte code points

v EBCDIC —> ASCII Translation table

– This table converts an EBCDIC character code to the corresponding ASCII character code.

– The translation table is not provided for the Unicode character set (CSID 131). The ASCII and

EBCDIC code points are identical.

– The translation table is an array of one byte character codes. The format of this translation table is

identical to the ASCII —> EBCDIC translation table above.

Double-Byte Character Set File Format

 Table 116. Double-Byte Character Set File Format

Byte Field Length Field Content Description

0 1 VERSION Font file version identifier

1 1 RESERVED

2 1 FLAGS Bits are on to indicate:

0 ASCII Index

1 EBCDIC Index

2 ASCII to EBCDIC

translation table

3 EBCDIC to ASCII

translation table

4-7 Reserved

3 1 RESERVED

4 4 LENGTH Total length of file, all fields

8 2 ASCII DEF ASCII default character

code

10 1 ASCII B10 Starting character code for

first byte of double-byte

character code

11 1 ASCII B1N Last character code for first

byte of double-byte

character code.

12 4 ASCII B1 TABLE OFFSET Offset of B1 table

Chapter 10. User-Definable Fonts 271

Table 116. Double-Byte Character Set File Format (continued)

Byte Field Length Field Content Description

16 4 ASCII —> EBCDIC

OFFSET

Offset of ASCII to EBCDIC

translation table

20 2 EBCDIC DEF EBCDIC default character

code

22 1 EBCDIC B10 Starting character code for

first byte of double-byte

character code

23 1 EBCDIC B1N Last character code for first

byte of double-byte

character code.

24 4 EBCDIC B1 TABLE

OFFSET

Offset of B1 table

28 4 EBCDIC —> ASCII

OFFSET

Table to translate from

EBCDIC to ASCII

32 START OF VARIABLE LENGTH DATA

V ASCII B1 TABLE Fullword offset for each B2

table

ASCII B2 TABLES B2 table definition

EBCDIC B1 TABLE Fullword offset for each B2

table

EBCDIC B2 TABLES B2 table definition

ASCII —> EBCDIC Table to translate from

ASCII to EBCDIC

EBCDIC —> ASCII Table to translate from

EBCDIC to ASCII

Field Content Description

The first six fields of the DBCS file are similar to the SBCS file. Refer to Field Content Description, the

description for SBCS, for more information.

v OFFSET (All table offset fields)

– The location of variable length tables are specified by an offset into the file that is relative to the start

of the variable length data. For example, the first table after the header is at offset zero.

v B10 and B1N (ASCII and EBCDIC)

– The range of the first byte in the double-byte character code starts at B10 and ends at B1N.

– You do not have to specify both an ASCII and EBCDIC index. If you do not specify one of the

indexes, make sure that the corresponding ASCII/EBCDIC flag is off to indicate that an index has not

been included.

– With the exception of the Unicode character set (CSID 131), valid character code ranges for B10 to

B1N are between X’20’ and X’FF’ for ASCII and X’40’ and X’FE’ for EBCDIC. The graPHIGS API

ignores all character codes in the range X’00’ to X’1F’ for ASCII, and X’00’ to X’3F’ and X’FF’ for

EBCDIC. The graPHIGS API, however, recognizes the full range of character codes X’00’ to X’FF’ for

the Unicode character set.

v B1 table (ASCII and EBCDIC)

– The B1 table is an array of offsets to the B2 tables. The offsets are relative to the start of the

variable length data area.

272 The graPHIGS Programming Interface: Technical Reference

– This index must be complete between B10-B1N even if all the characters are not defined. The

character index for undefined characters should be zero, indicating a non-supported character

encountered.

v B2 tables (ASCII and EBCDIC)

– B2 table format:

 Table 117. B2 ASCII and EBCDIC Format

Field Length Field Content Description

1 B20 Starting character code for 2nd byte

of double-byte character code

1 B2N Last char code for 2nd byte of

double-byte character code

V CHAR INDEX 2-byte symbol IDs

– B20 and B2N

- The range of the second byte in the double-byte character code starts at B20 and ends at B2N.

- With the exception of the Unicode character set (CSID 131), valid character code ranges for B20

to B2N are between X’20’ and X’FF’ for ASCII and X’40’ and X’FE’ for EBCDIC. The graPHIGS

API restricts all character sets from using X’00’ to X’1F’ in ASCII, and X’00’ to X’3F’ and X’FF’ in

EBCDIC. The Unicode character set does not restrict any symbols in the range X’00’ to X’FF’.

– CHAR INDEX

- Character index is an array of symbol IDs. A symbol ID is a two-byte positive integer.

- Even if you do not define all the characters, this index must be complete between B20-B2N. You

must set the character index for undefined characters to zero, in order to indicate non-supported

characters to the API.

v Translation tables (ASCII to EBCDIC, EBCDIC to ASCII)

– The translation tables use a two-level lookup identical to the double-byte character index. The B1

table contains the addresses of B2 tables. The B2 tables contain codepoints. The two level lookup

maps from one encoding, (ASCII or EBCDIC), to the opposite encoding. The following describes the

B1 and B2 tables.

 Table 118. B1 (ASCII to EBCDIC) Addresses

Field Length Field Content Description

1 B10 Starting character code

1 B1N Last character code

2 RESERVED

V OFFSET 4 byte offset to start of the B2 table

relative to the start of the variable

data area. The offset for undefined

character codes should be zero.

 Table 119. B2 (ASCII to EBCDIC) Code Points

Field Length Field Content Description

1 B20 Starting character code for 2nd byte

of double-byte character code

1 B2N Last char code for 2nd byte of

double-byte character code

V CODE POINTS 2-byte code points

Chapter 10. User-Definable Fonts 273

Symbol Definition File Format

 Table 120. Symbol Definition File Format

Byte Field Length Field Content Description

0 1 VERSION Font file version identifier

1 2 FLAGS Bits are to indicate what

optional information is

present for each symbol:

0 Symbol positioning

box is present

1-7 Reserved

3 1 CAP CAP line, must be greater

than 0

4 1 NTOP TOP of nominal symbol box

5 1 NBOT BOT of nominal symbol box

6 1 NRIGHT RIGHT of nominal symbol

box

7 1 NLEFT LEFT of nominal symbol

box

8 2 CTOP TOP of symbol clip box

10 2 CBOT BOT of symbol clip box

12 2 CRIGHT RIGHT of symbol clip box

14 2 CLEFT LEFT of symbol clip box

16 2 ASYM0 Starting symbol ID for range

of symbol IDs within this

font

18 2 ASYMN Last symbol ID for range of

symbol IDs within this font

20 4 LENGTH Total length of structure,

including field

24 4 SID INDEX OFFSET Offset of the symbol ID

index

28 4 SYMBOL DEFNS OFFSET Offset to the start of the

symbol definitions

32 START OF VARIABLE LENGTH DATA

V SID INDEX Symbol ID index

SYMBOL DEFNS Symbol definitions

Field Content Description

v VERSION

– The version identifier for this format is X’01’.

v FLAGS

– Symbol positioning box flag. This flag is on to indicate that each symbol index entry contains a

character body: TOP, BOT, RIGHT, LEFT.

v CAP

– Capline for this font. This value must be positive.

v NTOP, NBOT, NRIGHT and NLEFT

274 The graPHIGS Programming Interface: Technical Reference

– Values used to display the font with fixed size. The nominal symbol body dimensions (NTOP, NBOT,

NRIGHT and NLEFT) are signed integers. All values may range from positive 127 to negative 128.

v CTOP, CBOT, CRIGHT and CLEFT

– The minimum clipping boundary such that all strokes fall completely inside the boundary whenever

all symbols are positioned on a common origin. The minimum clipping boundary is expressed in local

font coordinates relative to the common origin.

– The clip box dimensions (CTOP, CBOT, CRIGHT and CLEFT) are signed integers.

– The API uses these dimensions for clipping and trivial accept/reject. If symbols exceed these

dimensions then unpredictable results may occur.

v ASYM0 and ASYMN

– The range of symbol IDs start at ASYM0 and end at ASYMN. This is the range for all the symbol IDs

within this font.

– Symbol IDs are positive integers that must be greater than or equal to one.

v OFFSET (SID INDEX and SYMBOL DEFNS)

– The location of variable length tables are specified by an offset into the file that is relative to the start

of the variable length data. For example, the first table after the header is at offset zero.

v SID INDEX

– This index must be complete between ASYM0-ASYMN even if all the symbols are not defined. A

symbol index entry for undefined symbols should have the undefined symbol flag on.

– Each entry in the symbol ID index has the following format:

 Table 121. B1 SID Index

Field Length Field Content Description

4 OFFSET Offset to locate symbol. The offset is

relative to the start of the symbol

definitions, e.g., the first symbol

definition after the index has offset

zero

2 LENGTH Number of bytes in symbol definition

1 FLAGS Flags are on to indicate:

0 Undefined symbol

1 Symbol definition should be

filled1

2-7 Reserved

1 RESERVED

1 TOP Top of character body2

1 BOTTOM Bottom of character body2

1 RIGHT Right of character body2

1 LEFT Left of character body2

Note:

1Each character does not have to be filled. The flags field indicates whether this character is filled. If the interface

does not support filled fonts, then the characters are not filled. See The graPHIGS Programming Interface:

Understanding Concepts for more information.

2The fields TOP, BOTTOM, RIGHT, LEFT are only present if bit 0 of the FLAGS field of the Symbol Definition file header

is set ON.

v SYMBOL DEFNS

Chapter 10. User-Definable Fonts 275

– Each symbol is represented by a list of X and Y pairs. A move/draw flag is associated with each X-Y

pair to indicate whether the graPHIGS API moves or draws to the pair. The X-Y pair are signed

relative values, relative to the previous ending point, for the first character to the origin of the

character box. If the first X-Y pair is a draw rather than a move then a line is drawn from the origin of

the character box.

Note: The X-Y relative values are represented in two’s complement notation (in which both positive

and negative numbers are represented as zeros and ones).

 Table 122. Symbol Definitions

Symbol Definitions

 X BYTE Y BYTE

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 s x x x x x x 1 s y y y y y y b

 | ----------- | ----------- |

 | | | | -- relative move/

 | | | | draw flag:

 | | | | 0 is draw

 | | | | 1 is move

 | | | |

 | | | -- relative to previous y

 -----------------------------sign bit

 |

 -- relative to previous x

– The maximum relative distance for X or Y is +63 or -64.

IBM 5080 Character Set Restrictions

For the 5080, the following restrictions apply:

1. The graPHIGS API must know the complete set of character set identifiers and font identifiers which

will be used during the workstation session, and the sizes of these character sets.

The FONTLIST PROCOPT allows the user to list the user-defined character sets which will be used for a

specific workstation type or connection identifier.

The API will determine the size of these character sets at Open Workstation time in order to allocate

the needed space for them. All of the character sets supplied by IBM will be automatically available on

the 5080 workstation, whether or not this PROCOPT is specified. See the FONTLIST PROCOPT description in

FONTLIST (Character Font List).

2. You must indicate the maximum number of character sets which will be active at any one time. This

defaults to 3, but may be set to any number up to 10 via the PROCOPT FONTPSIZ. See FONTPSIZ (Font

Pool Size).

3. The IBM 5080 restricts the number of Programmable Character Sets (PCS) to a maximum of 48. The

IBM 5080 uses a PCS for a single-byte character set OR a single first byte range of a double-byte

character set. Thus, the total number of single-byte character sets plus the total number of first byte

ranges of double-byte character sets cannot exceed 48 during a workstation session.

If your application uses the Japanese Language Feature for Kanji, PCSs are allocated in the 5080 for

the requested wards. These count towards the maximum of 48, but are undetectable by the API. Thus,

in this case you must ensure that the number of PCSs simultaneously active in the 5080 does not

exceed 48.

276 The graPHIGS Programming Interface: Technical Reference

Part 5. Format and Content of Structure Element Records

© Copyright IBM Corp. 1994, 2002 277

278 The graPHIGS Programming Interface: Technical Reference

Chapter 11. Structure Element Content as Returned by

GPQED

The contents and organization of the structure element contents built by the graPHIGS API are provided in

this chapter. The element codes that your application can use in the inclusion and exclusion lists for the

Element Search (GPELS) subroutine are also shown.

When your application uses the Inquire List of Element Data (GPQED) subroutine, see Structure Element

Content as Returned by GPQE.

Partial Table-of-Contents

v General Format

v Structure Element Codes

v Common Data Types

v Output Primitives

v Line Primitives

v Polyline 3 (GPPL3)

v Polyline 2 (GPPL2)

v Polyline Set 3 with Data (GPPLD3)

v Disjoint Polyline 3 (GPDPL3)

v Disjoint Polyline 2 (GPDPL2)

v Circle 2 (GPCR2)

v Circular Arc 2 (GPCRA2)

v Ellipse 3 (GPEL3)

v Ellipse 2 (GPEL2)

v Elliptical Arc 3 (GPELA3)

v Elliptical Arc 2 (GPELA2)

v Line Grid 3 (GPLG3)

v Line Grid 2 (GPLG2)

v Non-uniform B-Spline Curve 3 (GPNBC3)

v Non-uniform B-Spline Curve 2 (GPNBC2)

v Polyhedron Edge (GPPHE)

v Marker Primitives

v Polymarker 3 (GPPM3)

v Polymarker 2 (GPPM2)

v Marker Grid 3 (GPMG3)

v Marker Grid 2 (GPMG2)

v Annotation Text Primitives

v Annotation Text 3 (GPAN3)

v Annotation Text 2 (GPAN2)

v Annotation Text Relative 3 (GPANR3)

v Annotation Text Relative 2 (GPANR2)

v Geometric Text Primitives

v Geometric Text 3 (GPTX3)

v Geometric Text 2 (GPTX2)

v Character Line 2 (GPCHL2)

© Copyright IBM Corp. 1994, 2002 279

v Area Primitives

v Polygon 3 (GPPG3)

v Polygon 2 (GPPG2)

v Polygon 3 With Data (GPPGD3)

v Polygon 2 With Data (GPPGD2)

v Triangle Strip 3 (GPTS3)

v Quadrilateral Mesh 3 (GPQM3)

v Non-Uniform B-Spline Surface (GPNBS)

v Composite Fill Area 2 (GPCFA2)

v Trimmed Non-uniform B-Spline Surface (GPTNBS)

v Polysphere (GPSPH)

v Pixel Primitives

v Pixel 3 (GPPXL3)

v Pixel 2 (GPPXL2)

v Attribute Setting Structure Elements

v General Attributes

v Set HLHSR Identifier (GPHID)

v Set Antialiasing Identifier (GPAID)

v Set Z-buffer Protect Mask (GPZBM)

v Set Face Lighting Method (GPFLM)

v Set Depth Cue Index (GPDCI)

v Set Color Processing Index (GPCPI)

v Set Highlighting Color Index (GPHLCI)

v Set Highlighting Color Direct (GPHLCD)

v Add Class Name to Set (GPADCN)

v Remove Class Name from Set (GPRCN)

v Set Vertex Morphing Factors (GPVMF)

v Set Transparency Coefficient (GPTCO)

v Set Blending Function (GPBLF)

v Set Line-on-Line Color Direct (GPLLCD)

v Set Line-on-Line Color Index (GPLLCI)

v Attribute Selection

v Set Attribute Source Flag (GPASF)

v Polyline Attributes

v Set Curve Approximation Criteria (GPCAC)

v Set Trimming Curve Approximation Criteria (GPTCAC)

v Set Polyhedron Edge Culling (GPPHEC)

v Set Polyline Index (GPPLI)

v Set Linetype (GPLT)

v Set Polyline End Type (GPPLET)

v Set Linewidth Scale Factor (GPLWSC)

v Set Polyline Color Index (GPPLCI)

v Set Polyline Color Direct (GPPLCD)

v Set Polyline Shading Method (GPPLSM)

v Polymarker Attributes

280 The graPHIGS Programming Interface: Technical Reference

v Set Polymarker Index (GPPMI)

v Set Marker Type (GPMT)

v Set Marker Size Scale Factor (GPMSSC)

v Set Polymarker Color Index (GPPMCI)

v Set Polymarker Color Direct (GPPMCD)

v Text Attributes

v Set Character Height (GPCHH)

v Set Character Line Scale Factor (GPCHLS)

v Set Character Up Vector (GPCHUP)

v Set Character Up and Base Vectors (GPCHUB)

v Set Text Path (GPTXPT)

v Set Text Alignment (GPTXAL)

v Set Character Positioning Mode (GPCHPM)

v Set Text Index (GPTXI)

v Set Text Font (GPTXFO)

v Set Text Precision (GPTXPR)

v Set Text Linewidth Scale Factor (GPTLWS)

v Set Character Expansion Factor (GPCHXP)

v Set Character Spacing (GPCHSP)

v Set Text Color Index (GPTXCI)

v Set Text Color Direct (GPTXCD)

v Annotation Text Attributes

v Set Annotation Text Height Scale Factor (GPAHSC)

v Set Annotation Text Height (GPAH)

v Set Annotation Style (GPAS)

v Set Annotation Text Up Vector (GPAUP)

v Set Annotation Text Path (GPAPT)

v Set Annotation Text Alignment (GPAAL)

v Polygon Attributes

v Set Surface Approximation Criteria (GPSAC)

v Set Polygon Culling (GPPGC)

v Interior Attributes

v Set Face Distinguish Mode (GPFDMO)

v Set Light Source State (GPLSS)

v Set Lighting Calculation Mode (GPLMO)

v Set Interior Index (GPII)

v Set Interior Style (GPIS)

v Set Interior Style Index (GPISI)

v Set Interior Color Index (GPICI)

v Set Interior Color Direct (GPICD)

v Set Back Interior Color Index (GPBICI)

v Set Back Interior Color Direct (GPBICD)

v Set Specular Color Index (GPSCI)

v Set Specular Color Direct (GPSCD)

v Set Back Specular Color Index (GPBSCI)

Chapter 11. Structure Element Content as Returned by GPQED 281

v Set Back Specular Color Direct (GPBSCD)

v Set Surface Properties (GPSPR)

v Set Back Surface Properties (GPBSPR)

v Set Back Transparency Coefficient (GPBTCO)

v Set Back Blending Function (GPBBLF)

v Set Parametric Surface Characteristics (GPPSC)

v Set Data Morphing Factors (GPDMF)

v Set Back Data Morphing Factors (GPBDMF)

v Set Data Mapping Index (GPDMI)

v Set Back Data Mapping Index (GPBDMI)

v Set Data Filtering Method (GPDFM)

v Set Back Data Filtering Method (GPBDFM)

v Set Data Matrix 2 (GPDM2)

v Set Back Data Matrix 2 (GPBDM2)

v Set Reflectance Model (GPRMO)

v Set Back Reflectance Model (GPBRMO)

v Set Interior Shading Method (GPISM)

v Set Back Interior Shading Method (GPBISM)

v Edge Attributes

v Set Edge Index (GPEI)

v Set Edge Flag (GPEF)

v Set Edge Linetype (GPELT)

v Set Edge Scale Factor (GPESC)

v Set Edge Color Index (GPECI)

v Set Edge Color Direct (GPECD)

v Transformation Setting Structure Elements

v Modeling Transformation

v Set Global Transformation 3 (GPGLX3)

v Set Global Transformation 2 (GPGLX2)

v Set Modeling Transformation 3 (GPMLX3)

v Set Modeling Transformation 2 (GPMLX2)

v Set Modeling Clipping Indicator (GPMCI)

v Restore Modeling Clipping Volume (GPRMCV)

v Set Modeling Clipping Volume 3 (GPMCV3)

v Set Modeling Clipping Volume 2 (GPMCV2)

v Miscellaneous Structure Elements

v View selection

v Set View Index (GPVWI)

v Traversal Control

v Execute Structure (GPEXST)

v Test Extent 3 (GPTEX3)

v Test Extent 2 (GPTEX2)

v Set Condition (GPCOND)

v Conditional Execute Structure (GPCEXS)

v Conditional Return (GPCRET)

282 The graPHIGS Programming Interface: Technical Reference

v Identification

v Insert Label (GPINLB)

v Set Pick Identifier (GPPKID)

v Frame Buffer Control

v Set Frame Buffer Protect Mask (GPFBM)

v Set Frame Buffer Comparison (GPFBC)

v Application-Defined Data

v Insert Application Data (GPINAD)

v Null Data (GPNULL)

v Workstation Dependent Output (GPWDO)

General Format

Every structure element as returned by the Inquire List of Element Data (GPQED) inquiry subroutine has

the following data format:

 WORDS 1 |length | code| Element header

 2 | data | Element body

 / /

 | |

The actual element body may contain more data than is given in the specified structure elements that

follow this introduction. Any data that is undocumented is used internally by the graPHIGS API. You should

always use the Inquire List of Element Headers (GPQEHD) subroutine to determine the actual length of

the structure element. Use the length returned from the inquiry to calculate the size of your buffer (to

contain the data), and to access the position of the next structure element.

 length A halfword integer containing the length, in bytes, of the structure element. The length value includes

this field and the ″code″ field.

code A halfword integer uniquely identifying the structure element. The following value ranges are used:

<= 0 Reserved

1-255 Structure elements other than output primitives

256-511

Output primitive structure elements

>= 512 Reserved

 Within each value range, codes for individual structure elements are chosen in an arbitrary

manner. The actual code values for individual elements are shown following.

Chapter 11. Structure Element Content as Returned by GPQED 283

data A sequence of parameters defining the structure element. Parameters specified by the application

through the graPHIGS API may be reorganized but are stored in this field without changing their

values except in the following cases:

v When the parameter is required to show the data format of a parameter in the API but its data

format in the structure element is always fixed. A typical example of this case is the width

parameter specifying the distance between individual elements in a list type parameter. It is

required for the API but is not required for the structure element because no extra data is inserted

between the elements in the structure element format. Such a parameter is discarded and is not

stored in the element.

v When the parameter is used to show the length of a list type parameter. Because the list length in

the structure element can usually be determined from the length of the structure element itself, the

″number of entries″ parameter is not required for the structure element. A typical example of this

case is the npoint parameter for the Polyline primitive. Such a parameter is discarded.

v When the parameter includes a vector and its length has no significance. To increase the

performance of structure traversal, such a vector may be normalized by the API. A typical example

of this case is the ″character up vector″ for the text primitives.

Structure Element Codes

The following table shows the mnemonics used for the structure element codes and their actual values.

The inquiry GPQED returns the value as part of the header.

 Table 123. Mnemonics

Mnemonic Dec Hex Description

GPAAL 37 0025 Set Annotation Text

Alignment

GPADCN 226 00E2 Add Class Name to Set

GPAH 34 0022 Set Annotation Text Height

GPAHSC 33 0021 Set Annotation Text Height

Scale Factor

GPAID 82 0052 Set Antialiasing Identifier

GPAN2 266 010A Annotation Text 2

GPAN3 265 0109 Annotation Text 3

GPANR2 270 010E Annotation Text Relative 2

GPANR3 269 010D Annotation Text Relative 3

GPAPT 36 0024 Set Annotation Text Path

GPAS 32 0020 Set Annotation Style

GPASF 53 0035 Set Attribute Source Flag

GPAUP 35 0023 Set Annotation Text Up

Vector

GPBBLF 104 0068 Set Back Blending Function

GPBDFM 111 006F Set Back Data Filtering

Method

GPBDMF 116 0074 Set Back Data Morphing

Factors

GPBDMI 109 006D Set Back Data Mapping

Index

GPBDM2 113 0071 Set Back Data Matrix 2

284 The graPHIGS Programming Interface: Technical Reference

Table 123. Mnemonics (continued)

Mnemonic Dec Hex Description

GPBICD 64 0040 Set Back Interior Color

Direct

GPBICI 63 003F Set Back Interior Color

Index

GPBISM 107 006B Set Back Interior Shading

Method

GPBLF 103 0067 Set Blending Function

GPBRMO 105 0069 Set Back Reflectance

Model

GPBSCD 68 0044 Set Back Specular Color

Direct

GPBSCI 67 0043 Set Back Specular Color

Index

GPBSPR 71 0047 Set Back Surface

Properties

GPBTCO 102 0066 Set Back Transparency

Coefficient

GPCAC 76 004C Set Curve Approximation

Criteria

GPCEXS 254 00FE Conditional Execute

Structure

GPCFA2 308 0134 Composite Fill Area 2

GPCHH 19 0013 Set Character Height

GPCHLS 39 0027 Set Character Line Scale

Factor

GPCHL2 304 0130 Character Line 2

GPCHPM 22 0016 Set Character Positioning

Mode

GPCHSP 17 0011 Set Character Spacing

GPCHUB 38 0026 Set Character Up and Base

Vectors

GPCHUP 20 0014 Set Character Up Vector

GPCHXP 16 0010 Set Character Expansion

Factor

GPCOND 243 00F3 Set Condition

GPCPI 7 0007 Set Color Processing Index

GPCRA2 274 0112 Circular Arc 2

GPCRET 240 00F0 Conditional Return

GPCR2 273 0111 Circle 2

GPDCI 6 0006 Set Depth Cue Index

GPDFM 110 006E Set Data Filtering Method

GPDMF 115 0073 Set Data Morphing Factors

GPDMI 108 006C Set Data Mapping Index

GPDM2 112 0070 Set Data Matrix 2

Chapter 11. Structure Element Content as Returned by GPQED 285

Table 123. Mnemonics (continued)

Mnemonic Dec Hex Description

GPDPL2 260 0104 Disjoint Polyline 2

GPDPL3 259 0103 Disjoint Polyline 3

GPECD 44 002C Set Edge Color Direct

GPECI 29 001D Set Edge Color Index

GPEF 27 001B Set Edge Flag

GPEI 4 0004 Set Edge Index

GPELA2 283 011B Elliptical Arc 2

GPELA3 282 011A Elliptical Arc 3

GPELT 28 001C Set Edge Linetype

GPEL2 281 0119 Ellipse 2

GPEL3 280 0118 Ellipse 3

GPESC 30 001E Set Edge Scale Factor

GPEXST 250 00FA Execute Structure

GPFBC 50 0032 Set Frame Buffer

Comparison

GPFBM 49 0031 Set Frame Buffer Protect

Mask

GPFDMO 72 0048 Set Face Distinguish Mode

GPFLM 84 0054 Set Face Lighting Method

GPGLX2 211 00D3 Set Global Transformation 2

GPGLX3 210 00D2 Set Global Transformation 3

GPHID 74 004A Set HLHSR Identifier

GPHLCD 225 00E1 Set Highlighting Color

Direct

GPHLCI 224 00E0 Set Highlighting Color Index

GPICD 43 002B Set Interior Color Direct

GPICI 26 001A Set Interior Color Index

GPII 5 0005 Set Interior Index

GPINAD 228 00E4 Insert Application Data

GPINLB 251 00FB Insert Label

GPIS 24 0018 Set Interior Style

GPISI 25 0019 Set Interior Style Index

GPISM 106 006A Set Interior Shading Method

GPLG2 296 0128 Line Grid 2

GPLG3 295 0127 Line Grid 3

GPLLCD 117 0075 Set Line-on-Line Color

Direct

GPLLCI 118 0076 Set Line-on-Line Color

Index

GPLMO 79 004F Set Lighting Calculation

Mode

GPLSS 73 0049 Set Light Source State

286 The graPHIGS Programming Interface: Technical Reference

Table 123. Mnemonics (continued)

Mnemonic Dec Hex Description

GPLT 8 0008 Set Linetype

GPLWSC 9 0009 Set Linewidth Scale Factor

GPMCI 214 00D6 Set Modeling Clipping

Indicator

GPMCV2 213 00D5 Set Modeling Clipping

Volume 2

GPMCV3 212 00D4 Set Modeling Clipping

Volume 3

GPMG2 294 0126 Marker Grid 2

GPMG3 293 0125 Marker Grid 3

GPMLX2 209 00D1 Set Modeling

Transformation 2

GPMLX3 208 00D0 Set Modeling

Transformation 3

GPMSSC 12 000C Set Marker Size Scale

Factor

GPMT 11 000B Set Marker Type

GPNBC2 279 0117 Non-uniform B-Spline Curve

2

GPNBC3 278 0116 Non-uniform B-Spline Curve

3

GPNBS 305 0131 Non-Uniform B-Spline

Surface

GPNULL 229 00E5 Null Data

GPPGC 69 0045 Set Polygon Culling

GPPGD2 300 012C Polygon 2 With Data

GPPGD3 299 012B Polygon 3 With Data

GPPG2 290 0122 Polygon 2

GPPG3 289 0121 Polygon 3

GPPHE 309 0135 Polyhedron Edge

GPPHEC 78 004E Set Polyhedron Edge

Culling

GPPKID 252 00FC Set Pick Identifier

GPPLCD 40 0028 Set Polyline Color Direct

GPPLCI 10 000A Set Polyline Color Index

GPPLD3 318 013E Polyline Set 3 with Data

GPPLET 31 001F Set Polyline End Type

GPPLI 1 0001 Set Polyline Index

GPPL2 258 0102 Polyline 2

GPPL3 257 0101 Polyline 3

GPPLSM 98 0062 Set Polyline Shading

Method

Chapter 11. Structure Element Content as Returned by GPQED 287

Table 123. Mnemonics (continued)

Mnemonic Dec Hex Description

GPPMCD 41 0029 Set Polymarker Color Direct

(GPPMCD)

GPPMCI 13 000D Set Polymarker Color Index

GPPMI 2 0002 Set Polymarker Index

GPPM2 262 0106 Polymarker 2

GPPM3 261 0105 Polymarker 3

GPPSC 81 0051 Set Parametric Surface

Characteristics

GPPXL2 272 0110 Pixel 2

GPPXL3 271 010F Pixel 3

GPQM3 320 0140 Quadrilateral Mesh 3

GPRCN 227 00E3 Remove Class Name from

Set

GPRMCV 215 00D7 Restore Modeling Clipping

Volume

GPRMO 99 0063 Set Reflectance Model

GPSAC 77 004D Set Surface Approximation

Criteria

GPSCD 66 0042 Set Specular Color Direct

GPSCI 65 0041 Set Specular Color Index

GPSPH 312 0138 Polysphere

GPSPR 70 0046 Set Surface Properties

GPTCAC 80 0050 Set Trimming Curve

Approximation Criteria

GPTCO 101 0065 Set Transparency

Coefficient

GPTEX2 242 00F2 Test Extent 2

GPTEX3 241 00F1 Test Extent 3

GPTNBS 306 0132 Trimmed Non-uniform

B-Spline Surface

GPTS3 301 012D Triangle Strip 3

GPTXAL 23 0017 Set Text Alignment

GPTXCD 42 002A Set Text Color Direct

GPTXCI 18 0012 Set Text Color Index

GPTXFO 14 000E Set Text Font

GPTXI 3 0003 Set Text Index

GPTXPR 15 000F Set Text Precision

GPTXPT 21 0015 Set Text Path

GPTX2 264 0108 Geometric Text 2

GPTX3 263 0107 Geometric Text 3

GPVMF 114 0072 Set Vertex Morphing

Factors

GPVWI 216 00D8 Set View Index

288 The graPHIGS Programming Interface: Technical Reference

Table 123. Mnemonics (continued)

Mnemonic Dec Hex Description

GPWDO 246 00F6 Workstation Dependent

Output

GPZBM 85 0055 Set Z-buffer Protect Mask

Common Data Types

This section provides a generic listing of possible data types for structure element parameters. The Output

Primitives section refers to the data types described here in order to describe the specific data type of a

particular structure element parameter.

Point 3

 | x | Short floating-point number

 | y | Short floating-point number

 | z | Short floating-point number

Point 2

 | x | Short floating-point number

 | y | Short floating-point number

Vector 3

 | x | Short floating-point number

 | y | Short floating-point number

 | z | Short floating-point number

Vector 2

 | x | Short floating-point number

 | y | Short floating-point number

Control point 3

The format of this data type depends on the rationality flag, bit 15, of the cflag/sflag parameter within the

primitive.

0 NON-RATIONAL

 | x | Short floating-point number

 | y | Short floating-point number

 | z | Short floating-point number

Chapter 11. Structure Element Content as Returned by GPQED 289

1 RATIONAL

 | x | Short floating-point number

 | y | Short floating-point number

 | z | Short floating-point number

 | w | Short floating-point number

 Control point 2

The format of this data type depends on the rationality flag, bit 15, of the cflag parameter within the

primitive.

0 NON-RATIONAL

 | x | Short floating-point number

 | y | Short floating-point number

1 RATIONAL

 | x | Short floating-point number

 | y | Short floating-point number

 | w | Short floating-point number

 Color

The format of this data type depends on the ″color type″ bit in the primitive’s gflag parameter.

1 DIRECT

 | component 1 | Short floating-point number

 | component 2 | Short floating-point number

 | component 3 | Short floating-point number

where 0.0 <= component n <= 1.0

 Facet 3

The format of this data type depends on the bit settings in the ″oflag″ field in the primitive. When the bit

indicated to the left of each data item is 1, the data item is present. Otherwise, the corresponding data

item is not present. All data items, if they are present, must be specified in the order shown below.

 bit 7 | facet normal | 3 short floating-point numbers

 bit 6 | facet color | Color

Data_Extension

290 The graPHIGS Programming Interface: Technical Reference

The presence of this data type depends on a bit setting of the ″gflag″ field in the primitive. When bit 11 of

the ″gflag″ is 1, then additional data is present after the ″oflag″.

 WORDS 1 | Fl |Rsv1| Vl | Vdl| 4 unsigned byte integers

 2 |Rsv2|Rsv3|Vvml|Vdml| 4 unsigned byte integers

 3 |Rsv4|Rsv5|Rsv6|Rsv7| 4 unsigned byte integers

 Fl An unsigned byte counter that specifies the total number of words in the facet.

Rsv1 Reserved. Set to 0.

Vl An unsigned byte counter that specifies the total number of words in the vertex.

Vdl An unsigned byte counter that specifies the number of words of vertex data mapping data

(Vdl <= Vl).

Rsv2 Reserved. Set to 0.

Rsv3 Reserved. Set to 0.

Vvml An unsigned byte counter that specifies the number of words of vertex morphing vectors

(Vvml <= Vl).

Vdml An unsigned byte counter that specifies the number of words of data morphing vectors (Vvml

<= Vl).

Rsv4, Rsv5, Rsv6,

Rsv7

Reserved. Set to 0.

Vertex 3

The format of this data type depends on the bit settings of the ″oflag″ field in the primitive. When the bit

indicated to the left of each data item is 1, the data item is present. Otherwise, the corresponding data

item is not present. The data item without any corresponding bit is always present. All data items, if they

are present, must be specified in the order shown below.

 | coordinate | Point 3

 bit 15 | vertex normal | Vector 3

 bit 14 | vertex color | Color

 bit 13 | opt_data flag | Fullword integer

 bit 12 | tran_coeff | Floating-point number

 bit 11 | vertex morphing | ’Vvml x’

 / 3d vectors / Floating-point number

 bit 10 | data mapping | ’Vdl x’

 / data / Floating-point number

 bit 9 | data morphing | ’Vdml x’

 / vectors / Floating-point number

Vertex 2

Chapter 11. Structure Element Content as Returned by GPQED 291

The format of this data type depends on bit setting of the ″oflag″ field in the primitive. When the bit

indicated in the left of each data item is 1, the data item is present. Otherwise, the corresponding data

item is not present. The data item without any corresponding bit is always present. All data items, if they

are present, must be specified in the order shown below.

 | coordinate | Point 2

 bit 14 | vertex color | Color

 bit 13 | opt_data flag | Fullword integer

 bit 12 | tran_coeff | Floating-point number

 bit 11 | vertex morhping | ’Vvml x’

 / 2d vectors / Floating-point number

 bit 10 | data mapping | ’Vdl x’

 / data / Floating-point number

 bit 9 | data morphing | ’Vdml x’

 / vectors / Floating-point number

Notes:

1. The format of the ″vertex color″ field is determined by the ″color type″ bit of the gflag parameter.

2. The ″opt_data flag″ is a 32-bit integer which specifies additional information for this vertex depending

on the area primitive defined.

 bit 0-29 Reserved

bit 30 Edge indicator: 0 = NOT_AN_EDGE, 1 = IS_AN_EDGE

bit 31 Edge indicator: 0 = NOT_AN_EDGE, 1 = IS_AN_EDGE

When the value of bit 30 or bit 31 is 1, a line starting from this vertex is treated as a geometric edge.

Bit 30 is used by area primitives that require only one edge indicator flag per vertex. Quadrilateral

Mesh 3 and Triangle Strip 3 are the only area primitives that require two edge indicators per vertex.

Therefore, for the Quadrilateral Mesh 3 primitive, bit 30 is the edge indicator from specified vertex ″V″ (

i, j

) to vertex ″V″ (i + 1, j

), and bit 31 is the edge indicator from specified vertex ″V″ (sub i,j) to vertex

″V″ (i, j + 1

). For the Triangle Strip 3 primitive, bit 30 is the edge indicator from specified vertex ″V″ (i

)

to vertex ″V″ (i + 1

), and bit 31 is the edge indicator from specified vertex ″V″ (i

) to vertex ″V″ (i + 2

)

Edge indicators are used only when the current global edge flag is set to ON or GEOMETRY_ONLY

Output Primitives

Line Primitives

Polyline 3 (GPPL3)

This structure element defines a series of three-dimensional points that are to be connected by straight

lines. The width parameter is discarded when creating the structure element.

 WORDS 1 | length | X’0101’ | Element header

292 The graPHIGS Programming Interface: Technical Reference

2 | | Array of short

 / X,Y,Z,X,Y,Z,X... / floating-point numbers

 / /

Polyline 2 (GPPL2)

This structure element defines a series of two-dimensional points that are to be connected by straight

lines. The width parameter is discarded when creating the structure element.

 WORDS 1 | length | X’0102’ | Element header

 2 | | Array of short

 / X,Y,X,Y,X ... / floating-point numbers

 / /

Polyline Set 3 with Data (GPPLD3)

This structure element defines multiple three-dimensional polylines. The plwidth, vxwidth, and pldata

parameters are discarded when creating the structure element. The API’s vxdata parameter is used to

build the ″seglist″ field and is then discarded. Bits in the API’s pflags, plflags, and vxflags parameters are

used to build the oflag field and are then discarded.

 WORDS 1 | length | X’013E’ | Element header

 2 | gflag | oflag | 2 halfword integers

 3-5 | data_extension* | Data_extension

 | seglist | n x Segment

 / /

 / /

 Segment format

 | length | Fullword integer

 | vlist | m x Vertex 3

 / /

 / /

* The data_extension field is present only if bit 11 of the gflag is 1.

Disjoint Polyline 3 (GPDPL3)

This structure element defines a series of three-dimensional points that are to be connected by straight

lines in three-dimensional modeling space. The API’s npoint, width, pointlist and mdarray parameters are

used to build the ″seglist″ field and are then discarded.

 WORDS 1 | length | X’0103’ | Element header

 2 | | n x Segment

 / seglist /

 / /

 Segment format

 | length | Fullword integer

Chapter 11. Structure Element Content as Returned by GPQED 293

| | Array of short

 / X,Y,Z,X,Y,Z,X... / floating-point numbers

 / /

Disjoint Polyline 2 (GPDPL2)

This structure element defines a series of two-dimensional points that are to be connected by straight

lines. The API’s npoint, width, pointlist and mdarray parameters are used to build the ″seglist″ field and are

then discarded.

 WORDS 1 | length | X’0104’ | Element header

 2 | seglist | n x segment

 / /

 / /

 Segment format

 | length | Fullword integer

 | | Array of short

 / X,Y,X,Y,X,Y,X... / floating-point numbers

 / /

Circle 2 (GPCR2)

This structure element defines a circle in two-dimensional modeling space.

 WORDS 1 | length | X’0111’ | Element header

 2-3 | center | 2 short floating-point numbers

 4 | radius | Short floating-point number

Circular Arc 2 (GPCRA2)

This structure element defines a circular arc in two-dimensional modeling space.

 WORDS 1 | length | X’0112’ | Element header

 2-3 | center | 2 short floating-point numbers

 4 | radius | Short floating-point number

 5 | startang | Short floating-point number

 6 | endang | Short floating-point number

Ellipse 3 (GPEL3)

This structure element defines an ellipse in three-dimensional modeling space.

 WORDS 1 | length | X’0118’ | Element header

 2-4 | center | 3 short floating-point numbers

 5-7 | refv1 | 3 short floating-point numbers

 8-10 | refv2 | 3 short floating-point numbers

294 The graPHIGS Programming Interface: Technical Reference

Ellipse 2 (GPEL2)

This structure element defines an ellipse in two-dimensional modeling space.

 WORDS 1 | length | X’0119’ | Element header

 2-3 | center | 2 short floating-point numbers

 4-5 | refv1 | 2 short floating-point numbers

 6-7 | refv2 | 2 short floating-point numbers

Elliptical Arc 3 (GPELA3)

This structure element defines an elliptical arc in three-dimensional modeling space.

 WORDS 1 | length | X’011A’ | Element header

 2-4 | center | 3 short floating-point numbers

 5-7 | refv1 | 3 short floating-point numbers

 8-10 | refv2 | 3 short floating-point numbers

 11 | startv | Short floating-point number

 12 | endv | Short floating-point number

Elliptical Arc 2 (GPELA2)

This structure element defines an elliptical arc in two-dimensional modeling space.

 WORDS 1 | length | X’011B’ | Element header

 2-3 | center | 2 short floating-point numbers

 4-5 | refv1 | 2 short floating-point numbers

 6-7 | refv2 | 2 short floating-point numbers

 8 | startv | Short floating-point number

 9 | endv | Short floating-point number

Line Grid 3 (GPLG3)

This structure element defines a grid of lines in the plane defined by point, refv1, and refv2 in

three-dimensional modeling space.

 WORDS 1 | length | X’0127’ | Element header

 2-4 | point | 3 short floating-point numbers

 3-7 | refv1 | 3 short floating-point numbers

 8-10 | refv2 | 3 short floating-point numbers

 11 | imin | Fullword integer

 12 | imax | Fullword integer

Chapter 11. Structure Element Content as Returned by GPQED 295

13 | jmin | Fullword integer

 14 | jmax | Fullword integer

Line Grid 2 (GPLG2)

This structure element defines a grid of lines in the plane defined by point, refv1, and refv2 in

two-dimensional modeling space.

 WORDS 1 | length | X’0128’ | Element header

 2-3 | point | 2 short floating-point numbers

 4-5 | refv1 | 2 short floating-point numbers

 6-7 | refv2 | 2 short floating-point numbers

 8 | imin | Fullword integer

 9 | imax | Fullword integer

 10 | jmin | Fullword integer

 11 | jmax | Fullword integer

Non-uniform B-Spline Curve 3 (GPNBC3)

This structure element defines a non-uniform B-spline curve of the specified order using the specified

coefficients in three-dimensional modeling space.

 WORDS 1 | length | X’0116’ | Element header

 2 | cflag | tflag | 2 halfword integers

 3 | order | Fullword integer

 4 | npoint | Fullword integer

 5 | tmin | Short floating-point number

 6 | tmax | Short floating-point number

 7 | iknot | ’order’ x Iknot

 / /

 / /

 | ipoint | (’order’-1) x Ipoint

 / /

 / /

 | spanlist | (’npoint’-’order’+1) x span

 / /

 / /

 Iknot format

 | knot | Array of short floating-point numbers

 Ipoint format

 | cpoint | Control point 3

 | knot | Array of short floating-point numbers

296 The graPHIGS Programming Interface: Technical Reference

 Span format

 | cpoint | Control point 3

Non-uniform B-Spline Curve 2 (GPNBC2)

This structure element defines a non-uniform B-spline curve of the specified order using the specified

coefficients in two-dimensional modeling space.

 WORDS 1 | length | X’0117’ | Element header

 2 | cflag | tflag | 2 halfword integers

 3 | order | Fullword integer

 4 | npoint | Fullword integer

 5 | tmin | Short floating-point number

 6 | tmax | Short floating-point number

 7 | iknot | ’order’ x iknot

 / /

 / /

 | ipoint | (’order’-1) x ipoint

 / /

 / /

 | spanlist | (’npoint’-’order’+1) x span

 / /

 / /

 Iknot format

 | knot | Array of short floating-point numbers

 Ipoint format

 | cpoint | Control point 2

 | knot | Array of short floating-point numbers

 Span format

 | cpoint | Control point 2

The relation between the API parameters and fields in this structure element is shown by the following

picture.

 Control points Tessellation Knot values

 | |

 ’order’ | | -->’iknot’

 | |

 | |

 ----------- |---------|

 | | | |

 ’order’-1 | | | | -->’ipoint’

Chapter 11. Structure Element Content as Returned by GPQED 297

| | | |

 |---------| ----------- |---------|

 | | | | | |

 ’number’ | | | | | |

 | | | | | |

 ’order’+1 | | | | | | -->’span’

 | | | | | |

 | | | | | |

 ----------- ----------- -----------

Polyhedron Edge (GPPHE)

This structure element simulates the edge of a polyhedron type object.

 WORDS 1 | length | X’0135’ | Element header

 2 | edgelist | ’nedge’ x edge

 / /

 / /

 Edge format

 | normal#1 | 3 short floating-point numbers

 | normal#2 | 3 short floating-point numbers

 | vertex#1 | 3 short floating-point numbers

 | vertex#2 | 3 short floating-point numbers

Note: The API’s nedge parameter is discarded after being used to build the ″edgelist″ field.

Marker Primitives

Polymarker 3 (GPPM3)

This structure element defines a series of points that are to be identified with markers in three-dimensional

modeling space.

 WORDS 1 | length | X’0105’ | Element header

 2 | pointlist | ’npoint’ x Point 3

 / /

 / /

Note: The API’s npoint, width and pointlist parameters are used to build the ″plist″ field and are then

discarded.

Polymarker 2 (GPPM2)

This structure element defines a series of points that are to be identified with markers in two-dimensional

modeling space.

 WORDS 1 | length | X’0106’ | Element header

 2 | pointlist | ’npoint’ x Point 2

 / /

 / /

Note: The API’s npoint, width and pointlist parameters are used to build the ″plist″ field and are then

discarded.

298 The graPHIGS Programming Interface: Technical Reference

Marker Grid 3 (GPMG3)

This structure element defines a grid of markers in the plane defined by point, refv1, and refv2 in

three-dimensional modeling space.

 WORDS 1 | length | X’0125’ | Element header

 2-4 | point | 3 short floating-point numbers

 3-7 | refv1 | 3 short floating-point numbers

 8-10 | refv2 | 3 short floating-point numbers

 11 | imin | Fullword integer

 12 | imax | Fullword integer

 13 | jmin | Fullword integer

 14 | jmax | Fullword integer

Marker Grid 2 (GPMG2)

This structure element defines a grid of markers in the plane defined by point, refv1, and refv2 in

two-dimensional modeling space.

 WORDS 1 | length | X’0126’ | Element header

 2-3 | point | 2 short floating-point numbers

 4-5 | refv1 | 2 short floating-point numbers

 6-7 | refv2 | 2 short floating-point numbers

 8 | imin | Fullword integer

 9 | imax | Fullword integer

 10 | jmin | Fullword integer

 11 | jmax | Fullword integer

Annotation Text Primitives

Annotation Text 3 (GPAN3)

This structure element defines an annotation text string in three-dimensional modeling space.

 WORDS 1 | length | X’0109’ | Element header

 2-4 | point | 3 short floating-point numbers

 5 | length | Fullword integer

 6 | rsvd | csid | 2 halfword integers

 7 | text | Variable-length character string

 / /

 / /

Annotation Text 2 (GPAN2)

(Ref #91.) This structure element defines an annotation text string in two-dimensional modeling space.

Chapter 11. Structure Element Content as Returned by GPQED 299

 WORDS 1 | length | X’010A’ | Element header

 2-3 | point | 2 short floating-point numbers

 4 | length | Fullword integer

 5 | rsvd | csid | 2 halfword integers

 6 | text | Variable-length character string

 / /

 / /

Annotation Text Relative 3 (GPANR3)

This structure element defines an annotation text string in three-dimensional normalized projection

coordinates and annotates a specified reference point according to the annotation style in the traversal

state list.

 WORDS 1 | length | x’010D’ | Element header

 2-4 | refpoint | Point 3

 5-7 | offset | Point 3

 8 | length | Fullword integer

 9 | rsvrd | bcsid | 2 halfword integers

 10 | text | Fullword integer

 / /

 | |

Annotation Text Relative 2 (GPANR2)

This structure element defines an annotation text string in two-dimensional normalized projection

coordinates and annotates a specified reference point according to the annotation style in the traversal

state list.

 WORDS 1 | length | x’010E’ | Element header

 2-4 | refpoint | Point 2

 5-7 | offset | Point 2

 8 | length | Fullword integer

 9 | rsvrd | bcsid | 2 halfword integers

 10 | text | Fullword integer

 / /

 / /

Geometric Text Primitives

Geometric Text 3 (GPTX3)

This structure element defines a geometric text string in three-dimensional modeling space.

 WORDS 1 | length | X’0107’ | Element header

 2-4 | point | 3 short floating-point numbers

300 The graPHIGS Programming Interface: Technical Reference

5-7 | refvx | 3 short floating-point numbers

 8-10 | refvd | 3 short floating-point numbers

 11-13 | refvy | 3 short floating-point numbers

 14 | length | Fullword integers

 15 | rsvd | csid | 2 halfword integers

 16 | text | Variable-length character string

 / /

 / /

Geometric Text 2 (GPTX2)

This structure element defines a geometric text string in two-dimensional modeling space.

 WORDS 1 | length | X’0108’ | Element header

 2-3 | point | 2 short floating-point numbers

 4 | length | Fullword integer

 5 | rsvd | csid | 2 halfword integers

 6 | text | Variable-length character string

 / /

 / /

Character Line 2 (GPCHL2)

This structure element is used to define an integral number of a specific character along a line between

two specified points.

 WORDS 1 | length | X’0130’ | Element header

 2-3 | startp | 2 short floating-point numbers

 4-5 | endp | 2 short floating-point numbers

 6-7 | refvx | 2 short floating-point numbers

 8-9 | refvy | 2 short floating-point numbers

 10 | distance | Short floating-point number

 11 | nomhgt | Short floating-point number

 12 | X’0000’ | csid | 2 halfword integers

 13 |char| pad | Character code

Note: Character code is left-adjusted in the ″char″ field and the element is padded to a word boundary.

Area Primitives

Polygon 3 (GPPG3)

This structure element defines a polygon in three-dimensional modeling space.

 WORDS 1 | length | X’0121’ | Element header

Chapter 11. Structure Element Content as Returned by GPQED 301

2 | gflag | reserved | 2 halfword integers

 3 | contlist | ’areas’ x contour

 / /

 / /

 Contour format

 | contlen | Fullword integer

 | plist | m x Point 3

 / /

 / /

Note: The pointlist parameter is reorganized into the contlist. The areas, width and npoint parameter are

discarded after being used.

Polygon 2 (GPPG2)

This structure element defines a polygon in two-dimensional modeling space.

 WORDS 1 | length | X’0122’ | Element header

 2 | gflag | reserved | 2 halfword integers

 3 | contlist | ’areas’ x contour

 / /

 / /

 Contour format

 | contlen | Fullword integer

 | plist | m x Point 2

 / /

 / /

Note: The pointlist parameter is reorganized into the contlist. The areas, width and npoint parameter are

discarded after being used.

Polygon 3 With Data (GPPGD3)

This structure element defines a polygon with the specified number of subareas in three-dimensional

modeling space.

 WORDS 1 | length | X’012B’ | Element header

 2 | gflag | oflag | 2 halfword integers

 3-5 | data_extension* | Data_extension

 | facet | Facet 3

 | |

 | contlist | ’Number of subareas’

 / /

 / /

 Contour format

 | contlen | Fullword integer

302 The graPHIGS Programming Interface: Technical Reference

 | vlist | m x Vertex 3

 / /

 / /

* The data_extension field is present only if bit 11 of the gflag is 1.

Polygon 2 With Data (GPPGD2)

This structure element defines a polygon with the specified number of subareas in two-dimensional

modeling space.

 WORDS 1 | length | X’012C’ | Element header

 2 | gflag | oflag | 2 halfword integers

 3-5 | data_extension* | Data_extension

 | facet | Facet 2

 | |

 | contlist | ’Number of subareas’

 / /

 / /

 Contour format

 | contlen | Fullword integer

 | vlist | m x Vertex 2

 / /

 / /

* The data_extension field is present only if bit 11 of the gflag is 1.

Triangle Strip 3 (GPTS3)

This structure element defines (n-2) triangles from n vertexes in three-dimensional modeling space.

 WORDS 1 | length | X’012D’ | Element header

 2 | gflag | oflag | 2 halfword integers

 3-5 | data_extension* | Data_extension

 | vertex#1 | Vertex 3

 | |

 | vertex#2 | Vertex 3

 | |

 | body | ’Number of point - 2’

 / / x

 / / triangle

 Triangle format

 | facet | Facet 3

 | vertex | Vertex 3

Chapter 11. Structure Element Content as Returned by GPQED 303

* The data_extension field is present only if bit 11 of the gflag is 1.

Quadrilateral Mesh 3 (GPQM3)

This structure element defines (m-1 [default] n-1) quadrilaterals from a two-dimensional array of m [default]

n vertices in three-dimensional modeling space.

 WORDS 1 | length | X’0140’ | Element header

 2 | gflag | oflag | 2 halfword integers

 3-5 | data_extension* | Data_extension

 | row_dim | Fullword integer

 | col_dim | Fullword integer

 | vlist | row_dim x Vertex 3

 / /

 / /

 | quad_rows | (col_dim-1) x Quad_row

 / /

 / /

 Quad_row format

 | vertex | Vertex 3

 | quads | (row_dim-1) x Quad

 / /

 Quad format

 | facet | Facet 3

 | vertex | Vertex 3

* The data_extension field is present only if bit 11 of the gflag is 1.

Non-Uniform B-Spline Surface (GPNBS)

This structure element defines a Non-Uniform B-Spline Surface of the specified u and v orders using the

specified control points and knots.

 WORDS 1 | length | X’0131’ | Element header

 2 | sfflag | stflag | 2 halfword integers

 3 | u-order | Fullword integer

 4 | unumber | Fullword integer

 5 | vorder | Fullword integer

 6 | vnumber | Fullword integer

 7 | umin | Short floating-point number

 8 | umax | Short floating-point number

 9 | vmin | Short floating-point number

 10 | vmax | Short floating-point number

304 The graPHIGS Programming Interface: Technical Reference

 11 | uknots | ’u-number’ + ’u-order’

 / / x

 / / short floating-point number

 | utess | ’u-number’ - ’u-order’+1

 / / x

 | | short floating-point number

 | vknots | ’v-number’ + ’v-order’

 / / x

 | | short floating-point number

 | vtess | ’v-number’ - ’v-order’+1

 / / x

 | | short floating-point number

 | clist | ’u-number’ x ’v-number’

 / / x

 | | Control point 3

Composite Fill Area 2 (GPCFA2)

This structure element defines the planar area geometry defined by the specified contours using polygon

attributes.

 WORDS 1 | length | X’0134’ | Element header

 2 | gflag | reserved | 2 halfword integers

 3 | contlist | ’ncontour’ x contour

 / /

 / /

 Contour format

 | contlen | Fullword integer

 | seglist | ’ncurve’ x segment

 / /

 / /

 Segment format

 | seglen | Fullword integer

 | sgflag | sgtype | 2 halfword integers

 | segdef | Variable data

 / /

 / /

Trimmed Non-uniform B-Spline Surface (GPTNBS)

This structure element defines a trimmed non-uniform B-spline surface of the specified u and v orders

using the specified control points and knots.

 WORDS 1 | length | X’0132’ | Element header

 2 | sflag | stflag | 2 halfword integers

 3 | uorder | Fullword integer

Chapter 11. Structure Element Content as Returned by GPQED 305

4 | unumber | Fullword integer

 5 | vorder | Fullword integer

 6 | vnumber | Fullword integer

 7 | reserved1 | Fullword integer

 8 | reserved2 | Fullword integer

 9 | trimming | Variable-length field

 / /

 | uknots | ’u-number’ + ’u-order’

 / / x

 / / short floating-point number

 | utess | ’u-number’ - ’u-order’+1

 / / x

 / / short floating-point number

 | vknots | ’v-number’ + ’v-order’

 / / x

 / / short floating-point number

 | vtess | ’v-number’ - ’v-order’+1

 / / x

 / / short floating-point number

 | clist | ’u-number’ x ’v-number’

 / / x

 / / Control point 3

 Trimming format

 | trimlen | Fullword integer

 | contlist | ’ncontour’ x contour

 / /

 / /

 Contour format

 | contlen | Fullword integer

 | seglist | ’ncurve’ x segment

 / /

 / /

 Segment format

 | seglen | Fullword integer

 | sgflag | sgtype | 2 halfword integers

 | segdef | Variable data

 / /

 / /

Polysphere (GPSPH)

This structure element defines a sphere or a sequence of spheres in modeling space.

 WORDS 1 | length | X’0138’ | Element header

 2 | reserved | Fullword integer

306 The graPHIGS Programming Interface: Technical Reference

 3 | spherelist |

 / /

 / /

 Spherelist format

 | point | 3 short floating-point numbers

 | radius | Short floating-point number

Pixel Primitives

Pixel 3 (GPPXL3)

This structure element defines a three-dimensional rectangular array of pixels in modeling space.

 WORDS 1 | length | X’010F’ | Element header

 2-4 | point | 3 short floating-point numbers

 5 | nrows | Fullword integer

 6 | ncols | Fullword integer

 7 | pixels | ’nrows’ x ’ncols’

 / / one-byte unsigned integers

 / /

Pixel 2 (GPPXL2)

This structure element defines a two-dimensional rectangular array of pixels in modeling space.

 WORDS 1 | length | X’0110’ | Element header

 2-4 | point | 2 short floating-point numbers

 5 | nrows | Fullword integer

 6 | ncols | Fullword integer

 7 | pixels | ’nrows’ x ’ncols’

 / / one-byte unsigned integers

 / /

Attribute Setting Structure Elements

General Attributes

Set HLHSR Identifier (GPHID)

This structure element specifies how each geometric entity should be processed in the hidden line, hidden

surface removal process.

 WORDS 1 | length | X’004A’ | Element header

 2 | HLHSRid | Fullword integer

Chapter 11. Structure Element Content as Returned by GPQED 307

Set Antialiasing Identifier (GPAID)

This structure element sets whether antialiasing is performed for consecutive primitives within a view

depending on the antialiasing mode setting for the view.

 WORDS 1 | length | X’0052’ | Element header

 2 | antid | Fullword integer

Set Z-buffer Protect Mask (GPZBM)

This structure element defines a mask used to enable or disable updates of the Z-buffer.

 WORDS 1 | length | X’0055’ | Element header

 2 | mask | Fullword integer

Set Face Lighting Method (GPFLM)

This structure element sets the current face lighting method. Subsequent lighting calculations are effected

by this setting.

 WORDS 1 | length | X’0054’ | Element header

 2 |face lighting method| Fullword integer

Set Depth Cue Index (GPDCI)

This structure element supplies depth cue information to the workstation. The attributes defined in the

entry control the depth cueing applied to subsequent primitives.

 WORDS 1 | length | X’0006’ | Element header

 2 | index | Fullword integer

Set Color Processing Index (GPCPI)

This structure element sets an index into the color processing table on the workstation. The values in the

entry are used when creating output primitives.

 WORDS 1 | length | X’0007’ | Element header

 2 | index | Fullword integer

Set Highlighting Color Index (GPHLCI)

This structure element sets the index into the workstation-dependent color table, which is used for

highlighted primitives.

 WORDS 1 | length | X’00E0’ | Element header

 2 |highlighting color index| Fullword integer

Set Highlighting Color Direct (GPHLCD)

This structure element sets the direct color values to be used to render subsequent highlighted primitives.

308 The graPHIGS Programming Interface: Technical Reference

 WORDS 1 | length | X’00E1’ | Element header

 2-4 |highlighting color | 3 short floating-point numbers

 | |

Add Class Name to Set (GPADCN)

This structure element allows an application to define the eligibility of a primitive for pickability

(detectability), highlighting, and invisibility by associating it with a set of class names. During structure

traversal, the specified class names are added to the current class set.

 WORDS 1 | length | X’00E2’ | Element header

 2 | class name 1 | n x fullword integers

 | |

 / /

 / /

 | class name n |

Remove Class Name from Set (GPRCN)

This structure element allows an application to define the eligibility of a primitive for pickability

(detectability), highlighting, and invisibility by associating it with a set of class names. During structure

traversal, the specified class names are removed from the current class set.

 WORDS 1 | length | X’00E3’ | Element header

 2 | class name 1 | n x fullword integers

 | |

 / /

 / /

 | class name n |

Set Vertex Morphing Factors (GPVMF)

This structure element specifies vertex morphing factors which affect morphing of subsequent primitives

supplied with vertex morphing vectors.

 WORDS 1 | length | X ’0072’ | Procedure header

 2 | flength | Fullword integer

 3 | fdata | flength x

 / / Short floating-point number

Set Transparency Coefficient (GPTCO)

This structure element specifies the source transparency coefficient used to blend subsequent primitives

with previously rendered output.

 WORDS 1 | length | X’0065’ | Procedure header

 2 | coeff | Short floating-point number

Chapter 11. Structure Element Content as Returned by GPQED 309

Set Blending Function (GPBLF)

This structure element specifies the source blending function and the destination blending function used to

blend subsequent primitives with previously rendered output.

 WORDS 1 | length | X’0067’ | Procedure header

 2 | srcf | Fullword integer

 3 | destf | Fullword integer

Set Line-on-Line Color Direct (GPLLCD)

This structure element specifies the direct color values to be used when highlighting using the Frame

Buffer Comparison option WRITE_WHEN_NOT_EQUAL.

 WORDS 1 | length | X’0075’ | Element header

 2 | components | 3 floating point numbers

Set Line-on-Line Color Index (GPLLCI)

This structure element specifies an entry in the workstation’s rendering color table that contains the color

to be used when highlighting using the Frame Buffer Comparison option WRITE_WHEN_NOT_EQUAL.

 WORDS 1 | length | X’0076’ | Element header

 2 | index | Fullword integer

Attribute Selection

Set Attribute Source Flag (GPASF)

This structure element defines whether a particular attribute used for rendering a primitive should be from

the BUNDLED or CURRENT_INDIVIDUAL attribute setting.

 WORDS 1 | length | X’0035’ | Element header

 2 | asflist | n x ASFspec

 / /

 / /

 ASFspec format

 |attribute identifier | ASF value | 2 halfword integers

Polyline Attributes

Set Curve Approximation Criteria (GPCAC)

This structure element determines how curves are to be tessellated for subsequent curve primitives during

structure traversal.

 WORDS 1 | length | X’004C’ | Element header

 2 | criteria | Fullword integer

 3 | cvalue | Short floating-point number

310 The graPHIGS Programming Interface: Technical Reference

Set Trimming Curve Approximation Criteria (GPTCAC)

This structure element enables the application to control the tessellation of the trimming curve as well as

the surface in the area of the curve when rendering subsequent trimming surface primitives.

 WORDS 1 | length | X’0050’ | Element header

 2 | criteria | Fullword integer

 3 | cvalue | Short floating-point number

 4 | uvalue | Short floating-point number

 5 | vvalue | Short floating-point number

Set Polyhedron Edge Culling (GPPHEC)

This value supplies edge culling information to the workstation, and is used when drawing polyhedron

edge output primitives.

 WORDS 1 | length | X’004E’ | Element header

 2 | mode | Fullword integer

Set Polyline Index (GPPLI)

(Ref #92.) This structure element sets the current polyline bundle index to the specified value. All

subsequent polyline primitives use the contents of the specified bundle table entry for all polyline attributes

whose attribute source flag is set to BUNDLED.

 WORDS 1 | length | X’0001’ | Element header

 2 |polyline bundle index | Fullword integer

Set Linetype (GPLT)

This structure element sets the current line type to the specified value. All subsequent polyline primitives

use this line type for drawing the primitive if the line type attribute source flag is set to INDIVIDUAL.

 WORDS 1 | length | X’0008’ | Element header

 2 | linetype | Fullword integer

Set Polyline End Type (GPPLET)

This structure element sets the polyline end type to the specified value.

 WORDS 1 | length | X’001F’ | Element header

 2 | endtype | Fullword integer

Set Linewidth Scale Factor (GPLWSC)

This structure element sets the current line width scale factor to the specified value. All subsequent

polyline primitives use this value to determine the line width of lines to be drawn if the attribute source flag

is set to INDIVIDUAL.

 WORDS 1 | length | X’0009’ | Element header

 2 | linewidth scale factor | Short floating-point number

Chapter 11. Structure Element Content as Returned by GPQED 311

Set Polyline Color Index (GPPLCI)

This structure element sets the current polyline color index to the specified value. All subsequent polyline

primitives use this color index for drawing the primitive if the polyline color index attribute source flag is set

to INDIVIDUAL.

 WORDS 1 | length | X’000A’ | Element header

 2 | polyline color index | Fullword integer

Set Polyline Color Direct (GPPLCD)

This structure element is used when drawing polyline output primitives. All subsequent polyline primitives

use this value to determine the color of the output primitives if the polyline color attribute source flag is set

to INDIVIDUAL.

 WORDS 1 | length | X’0028’ | Element header

 2-4 | polyline color | 3 short floating-point numbers

 | |

Set Polyline Shading Method (GPPLSM)

This structure element sets the current polyline shading method. This shading method is used at structure

traversal time to render all subsequent Polyline with Data primitives with vertex colors defined. The vertex

colors are interpolated through connecting polylines when the polyline shading method is

2=POLYLINE_SHADING_COLOR. The i% sup th vertex color is used to color the i% sup th line when the polyline

shading method is 1=POLYLINE_SHADING_NONE.

 WORDS 1 | length | X’0062’ | Element header

 2 | method | Fullword integer

Polymarker Attributes

Set Polymarker Index (GPPMI)

This structure element sets the current polymarker bundle index to the specified value. All subsequent

polymarker primitives use the contents of the specified bundle table entry for all polymarker attributes

whose attribute source flags are set to BUNDLED.

 WORDS 1 | length | X’0002’ | Element header

 2 | polymarker bundle index| Fullword integer

Set Marker Type (GPMT)

This structure element sets the current marker type. All subsequent polymarker primitives use this marker

type for identifying each point if the marker type attribute source flag is set to INDIVIDUAL.

 WORDS 1 | length | X’000B’ | Element header

 2 | marker type | Fullword integer

Set Marker Size Scale Factor (GPMSSC)

This structure element sets the current marker size scale factor. All subsequent polymarker primitives use

this value to determine the size to draw the markers if the attribute source flag is set to INDIVIDUAL.

312 The graPHIGS Programming Interface: Technical Reference

 WORDS 1 | length | X’000C’ | Element header

 2 |marker size scale factor | Short floating-point number

Set Polymarker Color Index (GPPMCI)

This structure element sets the current polymarker color index to the specified value. All subsequent

polymarker primitives use this color index for drawing the primitive if the polymarker color index attribute

source flag is set to INDIVIDUAL.

 WORDS 1 | length | X’000D’ | Element header

 2 | polymarker color index | Fullword integer

Set Polymarker Color Direct (GPPMCD)

This structure element is used when drawing polymarker output primitives. All subsequent polymarker

primitives use this value for drawing the primitive if the polymarker color attribute source flag is set to

INDIVIDUAL.

 WORDS 1 | length | X’0029’ | Element header

 2-4 | polymarker color | 3 short floating-point numbers

 | |

Text Attributes

Set Character Height (GPCHH)

This structure element sets the current character height. All subsequent geometric text primitives will be

drawn with this value for the character height.

 WORDS 1 | length | X’0013’ | Element header

 2 | character height | Short floating-point number

Set Character Line Scale Factor (GPCHLS)

This structure element sets the value to be used to determine the height of the characters when rendering

all subsequent character line primitives.

 WORDS 1 | length | X’0027’ | Element header

 2 | line scale factor | Short floating-point number

Set Character Up Vector (GPCHUP)

This structure element sets the current geometric text character up vector to the specified value. The base

vector is set to 90[default] clockwise from the up vector. All subsequent geometric text primitives are drawn

with this value for the character up vector. The character up vector specifies the direction of the font

coordinate y-axis within the text reference coordinate system. The character base vector specifies the

direction of the font coordinate x-axis with the text reference coordinate system.

 WORDS 1 | length | X’0014’| Element header

 2 | X direction | Short floating-point number

 3 | Y direction | Short floating-point number

Chapter 11. Structure Element Content as Returned by GPQED 313

Set Character Up and Base Vectors (GPCHUB)

This structure element sets the current geometric text character up vector and base vector to the specified

value. The character up vector specifies the direction of the font coordinate y-axis within the text reference

coordinate system. The character base vector specifies the direction of the font coordinate x-axis with the

text reference coordinate system.

 WORDS 1 | length | X’0026’ | Element header

 2 | up X-direction | Short floating-point number

 3 | up Y-direction | Short floating-point number

 4 | base X-direction | Short floating-point number

 5 | base Y-direction | Short floating-point number

Set Text Path (GPTXPT)

This structure element sets the current geometric text path to the specified value. All subsequent

geometric text primitives are drawn with this value for the text path.

 WORDS 1 | length | X’0015’ | Element header

 2 | text path | Fullword integer

Set Text Alignment (GPTXAL)

This structure element sets the current geometric text alignment to the specified value. All subsequent

geometric text primitives are drawn with this value for text alignment.

 WORDS 1 | length | X’0017’ | Element header

 2 | horizontal | Fullword integer

 3 | vertical | Fullword integer

Set Character Positioning Mode (GPCHPM)

This structure element sets the current character positioning mode entry to the specified value. The

character positioning mode determines whether the character positioning box for the specific character or

the nominal positioning box for the font should be used in rendering annotation and geometric text

primitives.

 WORDS 1 | length | X’0016’ | Element header

 2 | mode | Fullword integer

Set Text Index (GPTXI)

This structure element sets the current text bundle index to the specified value. All subsequent annotation

and geometric text primitives use the contents of the specified bundle table entry for all text attributes

whose attribute source flags are set to BUNDLED.

 WORDS 1 | length | X’0003’ | Element header

 2 | text bundle index | Fullword integer

314 The graPHIGS Programming Interface: Technical Reference

Set Text Font (GPTXFO)

This structure element sets the current text font to the specified value. All subsequent annotation and

geometric text primitives are drawn in this font if the text font attribute source flag is set to INDIVIDUAL.

 WORDS 1 | length | X’000E’ | Element header

 2 | text font | Fullword integer

Set Text Precision (GPTXPR)

This structure element sets the current text precision to the specified value. All subsequent annotation and

geometric text primitives are drawn at this precision if the text precision attribute source flag is set to

INDIVIDUAL.

 WORDS 1 | length | X’000F’ | Element header

 2 | text precision | Fullword integer

Set Text Linewidth Scale Factor (GPTLWS)

This structure element specifies the width of a geometric text primitive’s lines (strokes) as a fraction of the

nominal text width. The device support multiplies this scale factor times the nominal linewidth on the

corresponding device to determine the requested width. The calculated value is then mapped to the

closest width available on the device. A scale factor of 1.0 generates a nominal size text line on any

workstation. At structure traversal, this scale factor is used, when the text line width factor ASF is set to

INDIVIDUAL.

 WORDS 1 | length | X’0077’ | Element header

 2 | lwidth | Floating point

 --------------------- number

Set Character Expansion Factor (GPCHXP)

This structure element sets the current character expansion factor. It indicates the deviation of the

character’s width/height ratio from the font default. All subsequent annotation and geometric text primitives

are drawn with this value for the character expansion factor if its attribute source flag is set to INDIVIDUAL.

 WORDS 1 | length | X’0010’ | Element header

 2 | character expansion factor | Short floating-point number

Set Character Spacing (GPCHSP)

This structure element sets the current character spacing, indicating the additional amount of space to be

placed between characters as a fraction of the character’s design. All subsequent annotation and

geometric text primitives are drawn with this value for the character spacing if its attribute source flag is

set to INDIVIDUAL.

 WORDS 1 | length | X’0011’ | Element header

 2 | character spacing | Short floating-point number

Set Text Color Index (GPTXCI)

This structure element sets the text color index to the specified value. All subsequent annotation and

geometric text primitives use this color index for drawing the primitive if the text color index attribute

source flag is set to INDIVIDUAL.

Chapter 11. Structure Element Content as Returned by GPQED 315

 WORDS 1 | length | X’0012’ | Element header

 2 | text color index | Fullword integer

Set Text Color Direct (GPTXCD)

This structure element sets the current text color to the specified value. All subsequent annotation and

geometric text primitives use the direct color values for drawing the primitive if the text color attribute

source flag is set to INDIVIDUAL.

 WORDS 1 | length | X’002A’ | Element header

 2-4 | text color | 3 short floating-point numbers

 | |

Annotation Text Attributes

Set Annotation Text Height Scale Factor (GPAHSC)

This structure element sets the current annotation height scale factor, specifying a ratio of the annotation

character height to the workstation’s nominal character height. All subsequent annotation text primitives

are drawn with this value for the height scale factor.

 WORDS 1 | length | X’0021’ | Element header

 2 | annotation height | Short floating-point number

 | scale factor |

Set Annotation Text Height (GPAH)

This structure element sets the current annotation height to the specified value.

 WORDS 1 | length | X’0022’ | Element header

 2 | annotation height | Short floating-point number

Set Annotation Style (GPAS)

This structure element sets the text style determining how the Annotation Text Relative 2/3 primitives are

to be visualized. This style value is used at the structure traversal time to render all subsequent annotation

text relative primitives.

 WORDS 1 | length | X’0020’ | Element header

 2 | style | Fullword integer

Set Annotation Text Up Vector (GPAUP)

This structure element sets the current annotation text character up vector to the specified value.

 WORDS 1 | length | X’0023’ | Element header

 2 | X direction | Short floating-point number

 3 | Y direction | Short floating-point number

Set Annotation Text Path (GPAPT)

This structure element sets the current annotation text path to the specified value.

316 The graPHIGS Programming Interface: Technical Reference

 WORDS 1 | length | X’0024’ | Element header

 2 | annotation path | Fullword integer

Set Annotation Text Alignment (GPAAL)

This structure element sets the current annotation text alignment to the specified value, affecting the

manner in which the annotation text extent rectangle is positioned in relation to the text position.

 WORDS 1 | length | X’0025’ | Element header

 2 | horizontal | Fullword integer

 3 | vertical | Fullword integer

Polygon Attributes

Set Surface Approximation Criteria (GPSAC)

This structure element sets the current surface approximation criteria to the specified value.

 WORDS 1 | length | X’004D’ | Element header

 2 | criteria | Fullword integer

 3 | uvalue | Short floating-point number

 4 | vvalue | Short floating-point number

Set Polygon Culling (GPPGC)

This structure element sets the current polygon culling mode to the specified value. This value is used

when rendering polygon output primitives, and supplies polygon culling information to the workstation.

 WORDS 1 | length | X’0045’ | Element header

 2 | mode | Fullword integer

Interior Attributes

Set Face Distinguish Mode (GPFDMO)

This structure element sets the current face distinguish mode to the specified value.

 WORDS 1 | length | X’0048’ | Element header

 2 | mode | Fullword integer

Set Light Source State (GPLSS)

This structure element adds light source indices specified in the activation list to the current light source

state and removes those in the deactivation list.

 WORDS 1 | length | X’0049’ | Element header

 2 | dnum | Fullword integer

 3 | anum | Fullword integer

Chapter 11. Structure Element Content as Returned by GPQED 317

4 | dlist | ’dnum’ x fullword integers

 / /

 / /

 | alist | ’anum’ x fullword integers

 / /

 / /

Set Lighting Calculation Mode (GPLMO)

This structure element sets the current lighting calculation mode to the specified value. This value is used

when creating polygon output primitives and supplies lighting information to the workstation.

 WORDS 1 | length | X’004F’ | Element header

 2 | mode | Fullword integer

Set Interior Index (GPII)

This structure element specifies an index into the interior bundle table, affecting only those attributes for

which the ASF is set to BUNDLED. All subsequent polygon primitives use the contents of the specified

bundle table entry for all interior attributes whose attribute source flags are set to BUNDLED.

 WORDS 1 | length | X’0005’ | Element header

 2 |interior bundle index | Fullword integer

Set Interior Style (GPIS)

This structure element sets the current interior style to the specified value. This value is used when

drawing polygon output primitives. All subsequent primitives use this attribute when drawing the interior if

the corresponding attribute source flag is set to INDIVIDUAL.

 WORDS 1 | length | X’0018’ | Element header

 2 | style | Fullword integer

Set Interior Style Index (GPISI)

This structure element sets the current interior style index, specifying an index into the pattern table or the

workstation-dependent hatch table (depending on the setting of the interior style). All subsequent primitives

use this attribute when drawing the interior if the corresponding attribute source flag is set to INDIVIDUAL

and the current interior style is HATCH or PATTERN.

 WORDS 1 | length | X’0019’ | Element header

 2 | index | Fullword integer

Set Interior Color Index (GPICI)

This structure element sets the current interior color index to the specified color index. All subsequent

primitives use this attribute when drawing the interior if the corresponding attribute source flag is set to

INDIVIDUAL and the current interior style is SOLID or HATCH.

 WORDS 1 | length | X’001A’ | Element header

 2 |interior color index| Fullword integer

318 The graPHIGS Programming Interface: Technical Reference

Set Interior Color Direct (GPICD)

This structure element sets the current interior color to the specified value. It is used when creating output

primitives. All subsequent primitives use this direct color value when drawing the interior if the

corresponding attribute source flag is set to INDIVIDUAL and the current interior style is set to SOLID or

HATCH.

 WORDS 1 | length | X’002B’ | Element header

 2-4 | interior color | 3 short floating-point numbers

 | |

Set Back Interior Color Index (GPBICI)

This structure element sets the current back interior color index to the specified color index. All subsequent

primitives use this attribute when drawing the back interior if the corresponding attribute source flag is set

to INDIVIDUAL and the current interior style is set to SOLID or HATCH and face distinguish mode is set to use

the back color attribute.

 WORDS 1 | length | X’003F’ | Element header

 2 |back interior color| Fullword integer

 | index |

Set Back Interior Color Direct (GPBICD)

This structure element sets the current back interior color to the specified value. This value is used when

drawing polygon output primitives. All subsequent primitives use this direct color value when drawing the

back interior if the corresponding attribute source flag is set to INDIVIDUAL and the current interior style is

set to SOLID or HATCH and face distinguish mode is set to use the back color attribute.

 WORDS 1 | length | X’0040’ | Element header

 2-4 | back interior | 3 short floating-point numbers

 | color |

Set Specular Color Index (GPSCI)

This structure element sets the current specular color index to the specified color value for area defining

geometries in lighting calculations.

 WORDS 1 | length | X’0041’ | Element header

 2 | specular color | Fullword integer

 | index |

Set Specular Color Direct (GPSCD)

This structure element sets the current specular color to the specified value for area defining geometries in

lighting calculations.

 WORDS 1 | length | X’0042’ | Element header

 2-4 | specular color | 3 short floating-point numbers

 | |

Set Back Specular Color Index (GPBSCI)

This structure element sets the current back specular color index to the specified value for area defining

geometries in lighting calculations.

Chapter 11. Structure Element Content as Returned by GPQED 319

 WORDS 1 | length | X’0043’ | Element header

 2 | back specular | Fullword integer

 | color index |

Set Back Specular Color Direct (GPBSCD)

This structure element sets the current back specular color to the specified value for area defining

geometries in lighting calculations.

 WORDS 1 | length | X’0044’ | Element header

 2-4 |back specular color| 3 short floating-point numbers

 | |

Set Surface Properties (GPSPR)

This structure element sets the current surface properties to the specified values.

 WORDS 1 | length | X’0046’ | Element header

 2 | ambient | Short floating-point number

 3 | diffuse | Short floating-point number

 4 | specular | Short floating-point number

 5 | exponent | Short floating-point number

 6 | transparent | Short floating-point number

Set Back Surface Properties (GPBSPR)

This structure element sets the current back surface properties to the specified values.

 | length | X’0047’ | Element header

 2 | ambient | Short floating-point number

 3 | diffuse | Short floating-point number

 4 | specular | Short floating-point number

 5 | exponent | Short floating-point number

 6 | transparent | Short floating-point number

Set Back Transparency Coefficient (GPBTCO)

This structure element specifies the source transparency coefficient used to blend subsequent back facing

portions of area primitives with previously rendered output.

 WORDS 1 | length | X’0066’ | Procedure header

 2 | coeff | Short floating-point number

Set Back Blending Function (GPBBLF)

This structure element specifies the source blending function and the destination blending function used to

blend subsequent back facing portions of area primitives with previously rendered output.

320 The graPHIGS Programming Interface: Technical Reference

 WORDS 1 | length | X’0068’ | Procedure header

 2 | srcf | Fullword integer

 3 | destf | Fullword integer

Set Parametric Surface Characteristics (GPPSC)

This structure element sets the characteristics for rendering parametric surfaces in wireframe.

 WORDS 1 | length | X’0051’ | Element header

 2 | type | Fullword integer

 for type=ISOPARAMETRIC LINES

 WORDS 1 | scope | Fullword integer

 2 | number of | Fullword integer

 | isoparametrics |

 | in u direction |

 3 | number of | Fullword integer

 | isoparametrics |

 | in v direction |

Set Data Morphing Factors (GPDMF)

This structure element supplies data morphing factors which affect morphing of subsequent primitives

supplied with data morphing vectors.

 WORDS 1 | length | X ’0073’ | Procedure header

 2 | flength | Fullword integer

 3 | fdata | flength x

 / / Short floating-point number

Set Back Data Morphing Factors (GPBDMF)

This structure element supplies back data morphing factors which affect morphing of subsequent back

facing portions of area primitives supplied with data morphing vectors.

 WORDS 1 | length | X ’0074’ | Procedure header

 2 | flength | Fullword integer

 3 | fdata | flength x

 / / Short floating-point number

Set Data Mapping Index (GPDMI)

This structure element specifies an entry in the workstation’s data mapping table which contains values

used to data map subsequent area primitives.

 WORDS 1 | length | X ’006C’ | Procedure header

 2 | index | Fullword integer

Chapter 11. Structure Element Content as Returned by GPQED 321

Set Back Data Mapping Index (GPBDMI)

This structure element specifies an entry in the workstation’s data mapping table which contains values

used to data map subsequent back facing portions of area primitives.

 WORDS 1 | length | X ’006D’ | Procedure header

 2 | index | Fullword integer

Set Data Filtering Method (GPDFM)

This structure element specifies the filtering methods used when performing data mapping.

 WORDS 1 | length | X ’006E’ | Procedure header

 2 | minfm | Fullword integer

 3 | magfm | Fullword integer

 4 | boundu | Fullword integer

 5 | boundv | Fullword integer

Set Back Data Filtering Method (GPBDFM)

This structure element specifies the filtering methods used when performing data mapping. These values

are used when rendering back facing portions of subsequent area primitives.

 WORDS 1 | length | X ’006F’ | Procedure header

 2 | minfm | Fullword integer

 3 | magfm | Fullword integer

 4 | boundu | Fullword integer

 5 | boundv | Fullword integer

Set Data Matrix 2 (GPDM2)

This structure element specifies a matrix used to modify the data mapping values specified in certain

primitives that support data mapping.

 WORDS 1 | length | X’0070’ | Procedure header

 2-10 |row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

322 The graPHIGS Programming Interface: Technical Reference

Set Back Data Matrix 2 (GPBDM2)

This structure element specifies a matrix used to modify the data mapping values on back facing portions

of certain primitives that support data mapping.

 WORDS 1 | length | X’0071’ | Element header

 2-10 |row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

Set Reflectance Model (GPRMO)

This structure element specifies the method which is used to control the lighting calculations performed on

subsequent area primitives.

 WORDS 1 | length | X ’0063’ | Element header

 2 | model | Fullword integer

Set Back Reflectance Model (GPBRMO)

This structure element specifies the method which is used to control the lighting calculations performed on

back facing portions of subsequent area primitives.

 WORDS 1 | length | X ’0069’ | Element header

 2 | model | Fullword integer

Set Interior Shading Method (GPISM)

This structure element specifies the method to shade the interior of subsequent area primitives.

 WORDS 1 | length | X ’006A’ | Procedure header

 2 | method | Fullword integer

Set Back Interior Shading Method (GPBISM)

This structure element specifies the method to shade the interior of back facing portions of subsequent

area primitives.

 WORDS 1 | length | X ’006B’ | Procedure header

 2 | method | Fullword integer

Chapter 11. Structure Element Content as Returned by GPQED 323

Edge Attributes

Set Edge Index (GPEI)

This structure element sets the edge bundle index to the specified value. All subsequent polygon primitives

use the contents of the specified bundle table entry for all edge attributes whose attribute source flags are

set to BUNDLED.

 WORDS 1 | length | X’0004’ | Element header

 2 | edge bundle index | Fullword integer

Set Edge Flag (GPEF)

This structure element sets the visibility of edges. All subsequent primitives use this attribute to determine

whether the edges should be drawn if the attribute source flag is set to INDIVIDUAL.

 WORDS 1 | length | X’001B’ | Element header

 2 | edge flag | Fullword integer

Set Edge Linetype (GPELT)

This structure element sets the current edge line type to the specified value. All subsequent primitives use

this edge line type for drawing the primitive if the edge line type attribute source flag is set to INDIVIDUAL

and the edge flag is set to ON.

 WORDS 1 | length | X’001C’ | Element header

 2 | edge linetype | Fullword integer

Set Edge Scale Factor (GPESC)

This structure element sets the current edge scale factor to the specified value. All subsequent primitives

use this value to determine the width of the edges to be drawn if the attribute source flag is set to

INDIVIDUAL and the edge flag is set to ON.

 WORDS 1 | length | X’001E’ | Element header

 2 | edge scale factor | Short floating-point number

Set Edge Color Index (GPECI)

This structure element sets the current edge color index to the specified value. All subsequent primitives

use this color index for drawing the edges if the edge color index attribute source flag is set to INDIVIDUAL

and the edge flag is set to ON.

 WORDS 1 | length | X’001D’ | Element header

 2 | edge color index | Fullword integer

Set Edge Color Direct (GPECD)

This structure element sets the current edge color entry to the specified value. All subsequent output

primitives use the direct color values for drawing the edges if the edge color direct attribute source flag is

set to INDIVIDUAL and the edge flag is set to ON.

324 The graPHIGS Programming Interface: Technical Reference

 WORDS 1 | length | X’002C’ | Element header

 2-4 | edge color | 3 short floating-point numbers

 | |

Transformation Setting Structure Elements

Modeling Transformation

Set Global Transformation 3 (GPGLX3)

This structure element specifies a global modeling transformation in three-dimensional modeling space,

causing the specified value to become the current global transformation for the current structure.

 WORDS 1 | X’0044’ | X’00D2’ | Element header

 2-17 |row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 1 col 4 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 2 col 4 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

 |row 3 col 4 matrix element| Short floating-point number

 |row 4 col 1 matrix element| Short floating-point number

 |row 4 col 2 matrix element| Short floating-point number

 |row 4 col 3 matrix element| Short floating-point number

 |row 4 col 4 matrix element| Short floating-point number

Set Global Transformation 2 (GPGLX2)

This structure element specifies a global modeling transformation in two-dimensional modeling space,

causing the specified value to become the current global transformation for the current structure.

 WORDS 1 | X’0028’ | X’00D3’ | Element header

 2-10 |row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

Chapter 11. Structure Element Content as Returned by GPQED 325

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

Set Modeling Transformation 3 (GPMLX3)

(Ref #93.) This structure element specifies a modification for a local modeling transformation in

three-dimensional modeling space. The specified matrix either replaces, is pre-concatenated with, or is

post-concatenated with the current local modeling transformation.

 WORDS 1 | length | X’00D0’ | Element header

 2 | composition type | Fullword integer

 3-18 |row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 1 col 4 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 2 col 4 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

 |row 3 col 4 matrix element| Short floating-point number

 |row 4 col 1 matrix element| Short floating-point number

 |row 4 col 2 matrix element| Short floating-point number

 |row 4 col 3 matrix element| Short floating-point number

 |row 4 col 4 matrix element| Short floating-point number

Set Modeling Transformation 2 (GPMLX2)

This structure element specifies a modification for a local modeling transformation in two-dimensional

modeling space. The specified matrix either replaces, is pre-concatenated with, or is post-concatenated

with the current local modeling transformation.

 WORDS 1 | X’002C’ | X’00D1’ | Element header

 2 | composition type | Fullword integer

 3-11 |row 1 col 1 matrix element| Short floating-point number

326 The graPHIGS Programming Interface: Technical Reference

|row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

Set Modeling Clipping Indicator (GPMCI)

This structure element indicates whether or not to perform modeling clipping on subsequent primitives.

 WORDS 1 | length | X’00D6’ | Procedure header

 2 | indicator | Fullword integer

Restore Modeling Clipping Volume (GPRMCV)

This structure element causes the current modeling clipping volume in the traversal state list to be restored

to the volume inherited by that structure.

 WORDS 1 | length | X’00D7’ | Procedure header

Set Modeling Clipping Volume 3 (GPMCV3)

This structure element sets the current modeling clipping volume in the traversal state list.

 WORDS 1 | length | X’00D4’ | Procedure header

 2 | operator | Fullword integer

 3 | number | Fullword integer

 4 - n | lhspace | number x half_space

 Half_space format

 | point | Point 3

 | normal | Vector 3

Set Modeling Clipping Volume 2 (GPMCV2)

This structure element sets the current modeling clipping volume in the traversal state list.

 WORDS 1 | length | X’00D5’ | Procedure header

 2 | operator | Fullword integer

 3 | number | Fullword integer

 4 - n | lhspace | number x half_space

 Half_space format

Chapter 11. Structure Element Content as Returned by GPQED 327

| point | Point 2

 | normal | Vector 2

Miscellaneous Structure Elements

View selection

Set View Index (GPVWI)

This structure element defines a view index to replace the current view index. The view index specifies an

entry in the workstation’s view table from which to select view orientation and mapping transformations.

 WORDS 1 | length | X’0008’ | Element header

 2 | index | Fullword integer

 | reserved | Fullword integer

Traversal Control

Execute Structure (GPEXST)

This structure element defines a call or invocation of another structure, relating two structures.

 WORDS 1 | length | X’00FA’ | Element header

 2 | structure id | Fullword integer

 3 | reserved | Fullword integer

 4 | reserved | Fullword integer

Test Extent 3 (GPTEX3)

This structure element modifies the cull flag (30th bit) and the prune flag (31st bit) within the current set of

condition flags. These flags are used when processing subsequent conditional execute structure elements

and conditional return elements.

 WORDS 1 | length | X’00F1’ | Element header

 2-4 | corner1 | 3 short floating-point numbers

 | |

 5-7 | corner2 | 3 short floating-point numbers

 | |

 8 | cull table index | Fullword integer

Test Extent 2 (GPTEX2)

This structure element modifies the cull flag (30th bit) and the prune flag (31st bit) within the current set of

condition flags. These flags are used when processing subsequent conditional execute structure elements

and conditional return elements.

 WORDS 1 | length | X’00F2’ | Element header

 2-3 | corner1 | 2 short floating-point numbers

 | |

328 The graPHIGS Programming Interface: Technical Reference

4-5 | corner2 | 2 short floating-point numbers

 | |

 6 | cull table index | Fullword integer

Set Condition (GPCOND)

This structure element modifies the current condition flag with the specified value.

 WORDS 1 | length | X’00F3’ | Element header

 2 | onflag | Fullword integer

 3 | offflag | Fullword integer

Conditional Execute Structure (GPCEXS)

This structure element specifies a conditional call or invocation of another structure. The current set of

condition flags are tested against the specified mask and condition. If the condition is satisfied, the target

structure is invoked.

 WORDS 1 | length | X’00FE’ | Element header

 2 | mask | Fullword integer

 3 | condition | Fullword integer

 4 | type | Fullword integer

 5 | structure id | Fullword integer

 6 | reserved | Fullword integer

 7 | reserved | Fullword integer

Conditional Return (GPCRET)

This structure element specifies a conditional return to the parent structure.

 WORDS 1 | length | X’00F0’ | Element header

 2 | mask | Fullword integer

 3 | condition | Fullword integer

Identification

Insert Label (GPINLB)

This structure element defines a label that the application uses to reference and modify structure

elements.

 WORDS 1 | length | X’00FB’ | Element header

 2 | label | Fullword integer

 3 | reserved | Fullword integer

Set Pick Identifier (GPPKID)

This structure element sets the current pick identifier to the specified value.

Chapter 11. Structure Element Content as Returned by GPQED 329

 WORDS 1 | length | X’00FC’ | Element header

 2 | pickid | Fullword integer

 3 | reserved | Fullword integer

Frame Buffer Control

Set Frame Buffer Protect Mask (GPFBM)

This structure element sets the current frame buffer write protect mask to the specified value.

 WORDS 1 | length | X’0031’ | Element header

 2 | write protect mask| Fullword integer

Set Frame Buffer Comparison (GPFBC)

This structure element sets the current frame buffer comparison to the specified value.

 WORDS 1 | length | X’0032’ | Element header

 2 | type | Fullword integer

 3 | comparison mask | Fullword integer

 4 | comparison value | Fullword integer

Application-Defined Data

Insert Application Data (GPINAD)

This structure element allows the insertion of application specific data into a structure element. The data is

ignored during traversal. The element is padded to a fullword boundary following the application defined

data.

 WORDS 1 | length | X’00E4’ | Element header

 2 | length | Fullword integer

 3 | application | Byte string

 / defined data /

 / /

Null Data (GPNULL)

This structure element defines a null data position in a structure. The data is ignored during traversal.

 WORDS 1 | length | X’00E5’ | Element header

Workstation Dependent Output (GPWDO)

This structure element defines data the application is sending directly to the workstation.

 WORDS 1 | length | X’00F6’ | Element header

 2 | length | Fullword integer

330 The graPHIGS Programming Interface: Technical Reference

3 | application | Byte string

 / defined data /

 / /

Chapter 11. Structure Element Content as Returned by GPQED 331

332 The graPHIGS Programming Interface: Technical Reference

Chapter 12. Structure Element Content as Returned by GPQE

If your application was coded to the Version 1 graPHIGS API, it may be dependent on the format of

structure elements from that version. The Inquire Element Content (GPQE) subroutine returns the contents

of the Version 1 structure elements in a format that is compatible with the Version 1 format. The contents

and organization of the structure element records built by the graPHIGS API are provided in this chapter.

When your application uses the Inquire Element Content (GPQE) subroutine, the size in bytes and the

contents of the structure element record are returned by the API in the formats presented here. The

subroutine call in parenthesis following each element shows the corresponding subroutine call used to

create the element.

The GPQE subroutine is provided only for compatibility with Version 1. If you use any of the new

subroutine calls provided in Version 2, you must convert your application to use the Inquire Element

Content (GPQED) subroutine. of structure elements returned by GPQED.

The notes preceding each structure element record format tell how the element is defined, and for some,

processing considerations of which you should be aware.

Structure elements are organized in this chapter as follows:

v Output Primitives

v Attributes

v Modeling and Viewing

v Miscellaneous Structure Elements

Output Primitives

Annotation 2 (GPAN2)

This structure element defines an annotation text string in modeling space. It is drawn at the location

specified in a plane parallel to the view plane.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | length of text string | Fullword integer

 | character set identifier| Fullword integer

 / characters of text / Variable-length character string

 / string /

Annotation 3 (GPAN3)

This structure element defines an annotation text string and its position in modeling space. It is drawn at

the location specified in a plane parallel to the view plane.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | z position | Short floating-point number

 | length of text string | Fullword integer

© Copyright IBM Corp. 1994, 2002 333

| character set identifier| Fullword integer

 / characters of text / Variable-length character string

 / string /

Circle 2 (GPCR2)

This structure element defines a two-dimensional circle primitive.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | radius | Short floating-point number

Circular Arc 2 (GPCRA2)

This structure element defines a two-dimensional circular arc primitive.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | radius | Short floating-point number

 | start angle | Short floating-point number

 | end angle | Short floating-point number

Disjoint Polyline 2 (GPDPL2)

This structure element defines a series of two-dimensional points that may or may not be connected by

straight lines. When processing this element during traversal, the z coordinate defaults to 0.0. The WIDTH

parameter is discarded when creating the structure element.

 | number of points | Fullword integer

 | |

 | array of point |

 / values stored / Array of short floating-point

 / X,Y,X,Y,X,Y,X.... / numbers

 | |

 | |

 / move/draw indicators / Array of fullword integers

 / /

 | |

Disjoint Polyline 3 (GPDPL3)

This structure element defines a series of three-dimensional points that may or may not be connected by

straight lines. The WIDTH parameter is discarded when creating the structure element.

 | number of points | Fullword integer

 | array of point |

 / values stored / Array of short

 / X,Y,Z,X,Y,Z,X.... / floating-point numbers

 | |

334 The graPHIGS Programming Interface: Technical Reference

| |

 / move/draw indicators / Array of fullword integers

 / /

 | |

Ellipse 2 (GPEL2)

This structure element defines a two-dimensional ellipse primitive.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | major axis component 1 | Short floating-point number

 | major axis component 2 | Short floating-point number

 | minor axis component 1 | Short floating-point number

 | minor axis component 2 | Short floating-point number

Ellipse 3 (GPEL3)

This structure element defines a three-dimensional ellipse primitive.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | z position | Short floating-point number

 | major axis component 1 | Short floating-point number

 | major axis component 2 | Short floating-point number

 | major axis component 3 | Short floating-point number

 | minor axis component 1 | Short floating-point number

 | minor axis component 2 | Short floating-point number

 | minor axis component 3 | Short floating-point number

Elliptical Arc 2 (GPELA2)

This structure element defines a two-dimensional elliptical arc primitive.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | major axis component 1 | Short floating-point number

 | major axis component 2 | Short floating-point number

 | minor axis component 1 | Short floating-point number

 | minor axis component 2 | Short floating-point number

Chapter 12. Structure Element Content as Returned by GPQE 335

| start angle | Short floating-point number

 | end angle | Short floating-point number

Elliptical Arc 3 (GPELA3)

This structure element defines a three-dimensional elliptical arc primitive.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | z position | Short floating-point number

 | major axis component 1 | Short floating-point number

 | major axis component 2 | Short floating-point number

 | major axis component 3 | Short floating-point number

 | minor axis component 1 | Short floating-point number

 | minor axis component 2 | Short floating-point number

 | minor axis component 3 | Short floating-point number

 | start angle | Short floating-point number

 | end angle | Short floating-point number

Pixel 2 (GPPXL2)

This structure element defines a pixel 2 primitive in modeling space.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | packing factor | Fullword integer

 | number of rows in array | Fullword integer

 | number of cols in array | Fullword integer

 / array of / Array of fullword integers

 / color indexes /

Pixel 3 (GPPXL3)

This structure element defines a pixel 3 primitive in modeling space.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | z position | Short floating-point number

 | packing factor | Fullword integer

 | number of rows in array | Fullword integer

 | number of cols in array | Fullword integer

336 The graPHIGS Programming Interface: Technical Reference

 / array of / Array of fullword integers

 / color indexes /

Polygon 2 (GPPG2)

This structure element defines a polygon in two-dimensional modeling space. All points specified are

placed in the x, y plane. The WIDTH parameter is discarded when creating the structure element.

 | number of subareas (n) | Fullword integer

 |# of points in subarea 1| Fullword integer

 / /

 / /

 |# of points in subarea n| Fullword integer

 | |

 / array of point values / Array of short

 / stored X,Y,X,Y,X.... / floating-point numbers

 | |

Polygon 3 (GPPG3)

This structure element defines a polygon in three-dimensional modeling space. All points specified must lie

in the same plane but no check is made to verify this. The WIDTH parameter is discarded when creating the

structure element.

 | number of subareas (n) | Fullword integer

 |# of points in subarea 1| Fullword integer

 / /

 / /

 |# of points in subarea n| Fullword integer

 | |

 / array of point values / Array of short

 / stored X,Y,Z,X,Y,Z,X... / floating-point numbers

 | |

Polyline 2 (GPPL2)

This structure element defines a series of two-dimensional points that are to be connected by straight

lines. The WIDTH parameter is discarded when creating the structure element.

 | number of points | Fullword integer

 | |

 / array of point values / Array of short

 / stored X,Y,X,Y,X.... / floating-point numbers

 | |

Polyline 3 (GPPL3)

This structure element defines a series of three-dimensional points that are to be connected by straight

lines. The WIDTH parameter is discarded when creating the structure element.

Chapter 12. Structure Element Content as Returned by GPQE 337

 | number of points | Fullword integer

 | |

 / array of point values / Array of short

 / stored X,Y,Z,X,Y,Z,X... / floating-point numbers

 | |

Polymarker 2 (GPPM2)

This structure element defines a series of two-dimensional points which are to be identified with markers.

The WIDTH parameter is discarded when creating the structure element.

 | number of points | Fullword integer

 | |

 / array of point values / Array of short

 / stored X,Y,X,Y,X,Y,X... / floating-point numbers

 | |

Polymarker 3 (GPPM3)

This structure element defines a series of three-dimensional points, which are to be identified with

markers. The WIDTH parameter is discarded when creating the structure element.

 | number of points | Fullword integer

 | |

 / array of point values / Array of short

 / stored X,Y,Z,X,Y,Z, / floating-point numbers

 | X,Y,Z... |

Geometric Text 2 (GPTX2)

This structure element defines a text string in modeling space. It is drawn at the location specified in the

XY plane.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | length of text string | Fullword integer

 | character set identifier| Fullword integer

 / characters of text / Variable-length character string

 / string /

Geometric Text 3 (GPTX3)

This structure element defines a text string and its orientation in modeling space. It is drawn at the location

specified and in the plane defined by the position and two reference points.

 | x position | Short floating-point number

 | y position | Short floating-point number

 | z position | Short floating-point number

 | x reference point 1 | Short floating-point number

338 The graPHIGS Programming Interface: Technical Reference

 | y reference point 1 | Short floating-point number

 | z reference point 1 | Short floating-point number

 | x reference point 2 | Short floating-point number

 | y reference point 2 | Short floating-point number

 | z reference point 2 | Short floating-point number

 | length of text string | Fullword integer

 | character set identifier| Fullword integer

 | | Variable-length character string

 / characters of text /

 / string /

 | |

Attributes

Set Polyline Index (GPPLI)

This structure element sets the current polyline bundle index to the specified value. All subsequent polyline

primitives use the contents of the specified bundle table entry for all polyline attributes whose attribute

source flag is set to BUNDLED.

 | polyline bundle index | Fullword integer

Set Polymarker Index (GPPMI)

This structure element sets the current polymarker bundle index to the specified value. All subsequent

polymarker primitives use the contents of the specified bundle table entry for all polymarker attributes

whose attribute source flags are set to BUNDLED.

 | polymarker bundle index | Fullword integer

Set Text Index (GPTXI)

This structure element sets the current text bundle index to the specified value. All subsequent text

primitives use the contents of the specified bundle table entry for all text attributes whose attribute source

flags are set to BUNDLED.

 | text bundle index | Fullword integer

Set Interior Index (GPII)

This structure element sets the interior bundle index to the specified value. All subsequent polygon

primitives use the contents of the specified bundle table entry for all interior attributes whose attribute

source flags are set to BUNDLED.

 | interior bundle index | Fullword integer

Chapter 12. Structure Element Content as Returned by GPQE 339

Set Edge Index (GPEI)

This structure element sets the edge bundle index to the specified value. All subsequent polygon primitives

use the contents of the specified bundle table entry for all edge attributes whose attribute source flags are

set to BUNDLED.

 | edge bundle index | Fullword integer

Set Linetype (GPLT)

This structure element sets the current line type to the specified value. All subsequent polyline primitives

use this line type for drawing the primitive if the line type attribute source flag is set to INDIVIDUAL.

 | linetype | Fullword integer

Set Linewidth Scale Factor (GPLWSC)

This structure element sets the current line width scale factor. All subsequent polyline primitives use this

value to determine the line width of lines to be drawn if the attribute source flag is set to INDIVIDUAL.

 | linewidth scale factor | Short floating-point number

Set Polyline Color Index (GPPLCI)

This structure element sets the current polyline color index to the specified value. All subsequent polyline

primitives use this color index for drawing the primitive if the polyline color index attribute source flag is set

to INDIVIDUAL.

 | polyline color index | Fullword integer

Set Polyline Endtype (GPPLET)

This structure element sets the polyline end type to the specified value.

 | endtype | Fullword integer

Set Marker Type (GPMT)

This structure element sets the current marker type. All subsequent polymarker primitives use this marker

type for identifying each point if the marker type attribute source flag is set to INDIVIDUAL.

 | marker type | Fullword integer

Set Marker Size Scale Factor (GPMSSC)

This structure element sets the current marker size scale factor. All subsequent polymarker primitives use

this value to determine the size to draw the markers if the attribute source flag is set to INDIVIDUAL.

 | marker size scale factor| Short floating-point number

340 The graPHIGS Programming Interface: Technical Reference

Set Polymarker Color Index (GPPMCI)

This structure element sets the current polymarker color index to the specified value. All subsequent

polymarker primitives use this color index for drawing the primitive if the polymarker color index attribute

source flag is set to INDIVIDUAL.

 | polymarker color index | Fullword integer

Set Text Font (GPTXFO)

This structure element sets the current text font to the one specified. All subsequent text primitives are

drawn in this font if the text font attribute source flag is set to INDIVIDUAL.

 | text font # | Fullword integer

Set Text Precision (GPTXPR)

This structure element sets the current text precision to that specified. All subsequent text primitives are

drawn at this precision if the text precision attribute source flag is set to INDIVIDUAL.

 | text precision | Fullword integer

Set Character Expansion Factor (GPCHXP)

This structure element sets the current character expansion factor. All subsequent text primitives are drawn

with this value for the character expansion factor if its attribute source flag is set to INDIVIDUAL. The value

is a fraction of the width/height ratio that the font designer specified. A value of 1.0 reproduces the font

designer’s aspect ratio.

 |character expansion factor| Short floating-point number

Set Character Spacing (GPCHSP)

This structure element sets the current character spacing. All subsequent text primitives are drawn with

this value for the character spacing if its attribute source flag is set to INDIVIDUAL.

 | character spacing | Short floating-point number

Set Annotation Height Scale Factor (GPAHSC)

This structure element sets the current annotation height scale factor. All subsequent annotation text

primitives are drawn with this value for the height scale factor.

 | annotation h.s.f. | Short floating-point number

Set Text Color Index (GPTXCI)

This structure element sets the text color index to the specified value. All subsequent text primitives use

this color index for drawing the primitive if the text color index attribute source flag is set to INDIVIDUAL.

 | text color index | Fullword integer

Chapter 12. Structure Element Content as Returned by GPQE 341

Set Character Height (GPCHH)

This structure element sets the current character height. All subsequent non-annotation text primitives will

be drawn with this value for the character height.

 | character height | Short floating-point number

Set Character Up Vector (GPCHUP)

This structure element sets the current character up vector. All subsequent text primitives are drawn with

this value for the character up vector.

 | X direction | Short floating-point number

 | Y direction | Short floating-point number

Set Geometric Text Path (GPTXPT)

This structure element sets the current geometric text path. All subsequent text primitives are drawn with

this value for the text path.

 | text path | Fullword integer

Set Geometric Text Alignment (GPTXAL)

This structure element sets the current geometric text alignment. All subsequent geometric text primitives

are drawn with this value for text alignment.

 | horizontal | Fullword integer

 | vertical | Fullword integer

Set Interior Style (GPIS)

This structure element sets the current interior style. All subsequent primitives use this attribute when

drawing the interior if the corresponding attribute source flag is set to INDIVIDUAL.

 | interior style | Fullword integer

Set Interior Style Index (GPISI)

This structure element sets the current interior style index. All subsequent primitives use this attribute

when drawing the interior if the corresponding attribute source flag is set to INDIVIDUAL and the current

interior style is HATCH or PATTERN.

 | interior style index | Fullword integer

Set Interior Color Index (GPICI)

The current interior color index is set by this structure element. All subsequent primitives use this attribute

when drawing the interior if the corresponding attribute source flag is set to INDIVIDUAL and the current

interior style is SOLID or HATCH.

 | interior color index | Fullword integer

342 The graPHIGS Programming Interface: Technical Reference

Set Edge Flag (GPEF)

The visibility of edges is set by this structure element. All subsequent primitives use this attribute to

determine whether the edges should be drawn if the attribute source flag is set to INDIVIDUAL.

 | edge flag | Fullword integer

Set Edge Linetype (GPELT)

This structure element sets the current edge line type to the specified value. All subsequent primitives use

this edge line type for drawing the primitive if the edge line type attribute source flag is set to INDIVIDUAL

and the edge flag is set to ON.

 | edge linetype | Fullword integer

Set Edge Color Index (GPECI)

This structure element sets the current edge color index to the specified value. All subsequent primitives

use this color index for drawing the edges if the edge color index attribute source flag is set to INDIVIDUAL

and the edge flag is set to ON.

 | edge color index | Fullword integer

Set Edge Scale Factor (GPESC)

This structure element sets the current edge scale factor to the specified value. All subsequent primitives

use this value to determine the width of the edges to be drawn if the attribute source flag is set to

INDIVIDUAL and the edge flag is set to ON.

 | edge scale factor | Short floating-point number

Set Attribute Source Flag (GPASF)

This structure element defines whether the attribute used for rendering each bundled attribute should be

the bundled or current individual attribute setting.

 | count | Fullword integer

 | |

 / array of / Array of fullword integers

 / attribute identifiers /

 | |

 | |

 / array of corresponding / Array of fullword integers

 / attribute ASF values /

 | |

Modeling and Viewing

Set Modeling Transformation 3 (GPMLX3)

This structure element specifies a modification for local modeling transformation.

 | composition type | Fullword integer

Chapter 12. Structure Element Content as Returned by GPQE 343

|row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 1 col 4 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 2 col 4 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

 |row 3 col 4 matrix element| Short floating-point number

 |row 4 col 1 matrix element| Short floating-point number

 |row 4 col 2 matrix element| Short floating-point number

 |row 4 col 3 matrix element| Short floating-point number

 |row 4 col 4 matrix element| Short floating-point number

Set Modeling Transformation 2 (GPMLX2)

This structure element specifies a modification for local modeling transformation. The matrix returned by

GPQE is the expanded, 4[default]4 matrix.

 | composition type | Fullword integer

 |row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 1 col 4 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 2 col 4 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

 |row 3 col 4 matrix element| Short floating-point number

 |row 4 col 1 matrix element| Short floating-point number

344 The graPHIGS Programming Interface: Technical Reference

|row 4 col 2 matrix element| Short floating-point number

 |row 4 col 3 matrix element| Short floating-point number

 |row 4 col 4 matrix element| Short floating-point number

Set Global Transformation 3 (GPGLX3)

This structure element specifies a global modeling transformation.

 |row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 1 col 4 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 2 col 4 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

 |row 3 col 4 matrix element| Short floating-point number

 |row 4 col 1 matrix element| Short floating-point number

 |row 4 col 2 matrix element| Short floating-point number

 |row 4 col 3 matrix element| Short floating-point number

 |row 4 col 4 matrix element| Short floating-point number

Set Global Transformation 2 (GPGLX2)

This structure element specifies a global modeling transformation. The matrix returned by GPQE is the

expanded, 4[default]4 matrix.

 |row 1 col 1 matrix element| Short floating-point number

 |row 1 col 2 matrix element| Short floating-point number

 |row 1 col 3 matrix element| Short floating-point number

 |row 1 col 4 matrix element| Short floating-point number

 |row 2 col 1 matrix element| Short floating-point number

 |row 2 col 2 matrix element| Short floating-point number

 |row 2 col 3 matrix element| Short floating-point number

 |row 2 col 4 matrix element| Short floating-point number

 |row 3 col 1 matrix element| Short floating-point number

Chapter 12. Structure Element Content as Returned by GPQE 345

 |row 3 col 2 matrix element| Short floating-point number

 |row 3 col 3 matrix element| Short floating-point number

 |row 3 col 4 matrix element| Short floating-point number

 |row 4 col 1 matrix element| Short floating-point number

 |row 4 col 2 matrix element| Short floating-point number

 |row 4 col 3 matrix element| Short floating-point number

 |row 4 col 4 matrix element| Short floating-point number

Miscellaneous Structure Elements

Add Class Name to Set (GPADCN)

This structure element adds class names to the current class set.

 | # of class names (n) | Fullword integer

 | class name 1 | Fullword integer

 / /

 / /

 | class name n | Fullword integer

Execute Structure (GPEXST)

This structure element defines a call or invocation of another structure.

 | structure id | Fullword integer

Set Highlighting Color Index (GPHLCI)

This structure element sets the index into the workstation-dependent color table, which is used for

highlighted primitives.

 | highlighting color index| Fullword integer

Insert Application Data (GPINAD)

This structure element contains application specified data.

 | application defined |

 / /

 | data |

Insert Label (GPINLB)

This structure element defines a label that the application uses to reference and modify structure

elements.

 | label | Fullword integer

346 The graPHIGS Programming Interface: Technical Reference

Set Pick Identifier (GPPKID)

This structure element sets the current pick identifier to the specified value.

 | pick identifier | Fullword integer

Remove Class Name from Set (GPRCN)

This structure element removes class names from the current class set.

 | # of class names (n) | Fullword integer

 | class name 1 | Fullword integer

 / /

 / /

 | class name n | Fullword integer

Chapter 12. Structure Element Content as Returned by GPQE 347

348 The graPHIGS Programming Interface: Technical Reference

Appendix A. State Lists

You may wish to know the specific data types and representations supported by the graPHIGS API.

This appendix shows you the description of the data fields and their data types for State Lists and

description tables which are used by the API and may be queried by the application program. They are:

v Operating States List (OSL)

v graPHIGS API Descriptor Table (PDT)

v graPHIGS API State List (PSL)

v Structure Store State List (SSL)

v Workstation State List (WSL)

v graPHIGS API Error State List (ESL)

v Utility Function State List (USL)

Operating States List (OSL)

The graPHIGS API defines four state variables. These variables determine the current operating status of

each component in the system. Before the API is invoked, all states are CLOSED.

The right-hand column lists the inquiry function that you can use when you want your application to know

the operating states of the system.

Data Type Field

In the tables and lists presented in this appendix, the following correspondence applies to the abbreviated

data types:

 Table 124. Operating States List (OSL) Data Type Field Definition

Data Type Definition

I Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is

defined by enumerating the identifiers denoting the

values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) x t (data type) indicates

a collection of data of that type. This can be indicated in

one of two ways:

v By using notation such as 3xR (three real numbers),

which could specify something like the x, y, and z

coordinates of a three-dimensional point or RGB

values

v By using a variable number such as nxI, which

specifies a collection of n integers.

 Table 125. Operating States List (OSL) Data Type Field Description

Description of Field Data Type Inquiry

Archive state value

(AROP, ARCL)

E GPQASV[state]

© Copyright IBM Corp. 1994, 2002 349

Table 125. Operating States List (OSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

System state value

(CLOSED, OPEN)

E GPQSYV[state]

Workstation state value

(CLOSED, OPEN, SELECTED)

E GPQWSV[state]

Structure state value

(STRUCTURE STORE SELECTED BUT NO STRUCTURE IS OPEN [STCL],

 STRUCTURE STORE SELECTED AND A STRUCTURE IS OPEN [STOP],

 NO STRUCTURE STORE ATTACHED/CREATED [SSCL],

 STRUCTURE STORE ATTACHED/CREATED BUT NOT SELECTED [SSOP],

 [NROP])

E GPQSTV[state]

The graPHIGS API Descriptor Table (PDT)

This list indicates the values which describe the capabilities of the graPHIGS API. The right-hand column

lists the inquiry function that you can use when you want your application to know the capabilities of the

graPHIGS API.

Data Type Field

In the tables and lists presented in this appendix, the following correspondence applies to the abbreviated

data types:

 Table 126. Descriptor Table (PDT) Data Type Field Definition

Data Type Definition

I Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is

defined by enumerating the identifiers denoting the

values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) x t (data type) indicates

a collection of data of that type. This can be indicated in

one of two ways:

v By using notation such as 3xR (three real numbers),

which could specify something like the x, y, and z

coordinates of a three-dimensional point or RGB

values

v By using a variable number such as nxI, which

specifies a collection of n integers.

 Table 127. Descriptor Table (PDT) Data Type Field Description

Description of Field Data Type Inquiry

Number of available connection methods I GPQCMM[totnum]

List of available connection methods nxI GPQCMM[conn]

Number of available application image formats I GPQAI[totnum]

List of available application image formats nxI GPQAI[format]

350 The graPHIGS Programming Interface: Technical Reference

The graPHIGS API State List (PSL)

This list indicates the values maintained by the graPHIGS API which describe its current state. As your

application runs, the values can change. The right-hand column lists the inquiry function that you can use

when you want your application to acquire the values.

Data Type Field

The following correspondence applies to the abbreviated data types:

 Table 128. State List (PSL) Data Type Definitions

Data Type Definition

I Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is defined by enumerating the

identifiers denoting the values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) x t (data type) indicates a collection of data of that

type. This can be indicated in one of two ways:

v By using notation such as 3xR (three real numbers), which could specify

something like the x, y, and z coordinates of a three-dimensional point or RGB

values

v By using a variable number such as nxI, which specifies a collection of n integers.

 Table 129. State List (PSL) Data Type Description

Description of Field Data Type Inquiry

Shell product level I GPQSPL[level]

Shell identifier on a nucleus I GPQSH[shid]

Application environment descriptor 4xS GPQSH[env]

Shell deferral mode

(FLUSH, DEFERRED, DEFERRED_PLUS_MSGS)

E GPQSHD[deferral]

Convexity checking mode E

Update notification mode

(NO, YES)

E GPQSHD[update]

Current selected structure store I GPQSSS[ssid]

Nucleus resource identifier for a resource I GPQNCR[rid]

Number of resources attached to the shell I GPQATR[totnum]

List of resources attached to the shell nxI GPQATR[id]

Number of nuclei connected to the shell I GPQCNC[totnum]

List of nucleus identifiers connected to the shell nxI GPQCNC[ncid]

Current event report n GPQCEV[major, class,

minor]

Current edit mode

(INSERT_MODE, REPLACE_MODE)

E GPQEDM[mode]

More simultaneous events input flag

(NOMORE, MORE)

E GPQSEV[simevnt]

Appendix A. State Lists 351

Table 129. State List (PSL) Data Type Description (continued)

Description of Field Data Type Inquiry

Current character set identifier I GPQCS[csid]

Current direct color model

(RGB, HSV, CMY, CIELUV)

E GPQDCM[model]

Number of open workstations on a nucleus I GPQOPW[totnum]

List of open workstations on a nucleus nxI GPQOPW[lwsid]

Conflict Resolution State

(ABANDON, MAINTAIN, UPDATE)

E GPQCNR[state]

Structure Store State List (SSL)

This list indicates the values maintained by the graPHIGS API which describe the current operating state

of a structure store resource. Content of the structure store state list may change during application

processing.

The right-hand column lists the inquiry function that you can use when you want your application to

acquire the current values.

Data Type Field

The following correspondence applies to the abbreviated data types:

 Table 130. Structure Store State List (SSL) Data Type Field Definition

Data Type Definition

I Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is

defined by enumerating the identifiers denoting the

values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) x t (data type) indicates

a collection of data of that type. This can be indicated in

one of two ways:

v By using notation such as 3xR (three real numbers),

which could specify something like the x, y, and z

coordinates of a three-dimensional point or RGB

values

v By using a variable number such as nxI, which

specifies a collection of n integers.

 Table 131. Structure Store State List (SSL) Data Type Field Description

Description of Field Data Type Inquiry

Current open structure identifier I GPQOPS[strid]

Current element pointer I GPQEP[value]

Structure existence

(NON_EXISTENT, EXISTENT)

E GPQSTE[flag]

352 The graPHIGS Programming Interface: Technical Reference

Table 131. Structure Store State List (SSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

Number of existing structures I GPQSTI[totnum]

List of existing structures nxI GPQSTI[lstrid]

Number of existing execute structures I GPQEXS[totnum]

List of existing execute structures nxI GPQEXS[lstrid]

List of element headers nx S GPQEHD[header]

List of element data nxS GPQHD[data]

Number of workstations to which the structure is associated I GPQWSA[totnum]

List of workstations to which the structure is associated nxI GPQWSA[lwsid]

Workstation State List (WSL)

This list describes the current operating state of a given workstation. One WSL exists for each open

workstation. Content of the Workstation State List may change during application processing.

The right-hand column lists the inquiry subroutine call that you can use when you want your application to

acquire the current values.

Data Type Field

The following correspondence applies to the abbreviated data types:

 Table 132. Workstation State List (WSL) Data Type Field Definition

Data Type Definition

I Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is

defined by enumerating the identifiers denoting the

values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) x t (data type) indicates

a collection of data of that type. This can be indicated in

one of two ways:

v By using notation such as 3xR (three real numbers),

which could specify something like the x, y, and z

coordinates of a three-dimensional point or RGB

values

v By using a variable number such as nxI, which

specifies a collection of n integers.

 Table 133. Workstation State List (WSL) Data Type Field Description

Description of Field Data Type Inquiry

Connection identifier S GPQRCT[olen,connid]

Workstation type (actual) S GPQRCT[wstype]

Requested workstation windows 6xR GPQWSX[rwindow]

Current workstation windows 6xR GPQWSX[cwindow]

Appendix A. State Lists 353

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

Requested workstation viewports 6xR GPQWSX[rviewpt]

Current workstation viewports 6xR GPQWSX[cviewpt]

Table of Requested Viewing Operation Information:

 Total number of requested viewing table entries in output priority

order

I GPQRVO[nview]

 Total number of requested viewing table entries in input priority

order

I GPQRVE[nview]

For Each View Entry:

 Viewing transformation matrix 4x4xR GPQRVR[data—group

18, 19]

 View mapping matrix 4x4xR GPQRVR[data—group

22, 23]

 Window viewing coordinates 4xR GPQRVR[data—group

16, 17]

 Viewport (normalized projection coordinates) 6xR GPQRVR[data—group

14, 15]

 Projection (reference point viewing coordinates) 3xR GPQRVR[data—group

17]

 View plane distance R GPQRVR[data—group

17]

 Near distance R GPQRVR[data—group

17]

 Far distance R GPQRVR[data—group

17]

 Projection type

 (PARALLEL, PERSPECTIVE)

E GPQRVR[data—group

17]

 Window clipping indicator

 (CLIP, NOCLIP)

E GPQRVR[data—group

1]

 Near clipping indicator

 (CLIP, NOCLIP)

E GPQRVR[data—group

2]

 Far clipping indicator

 (CLIP, NOCLIP)

E GPQRVR[data—group

3]

 Shielding indicator

 (OFF, ON)

E GPQRVR[data—group

4]

 Shielding color type

 (INDEXED, DIRECT)

I GPQRVR[data—group

5]

 Shielding color I or 3xR GPQRVR[data—group

5]

 View border indicator

 (OFF, ON)

E GPQRVR[data—group

6]

 View border color type

 (INDEXED, DIRECT)

I GPQRVR[data—group

7]

 View border color I or 3xR GPQRVR[data—group

7]

354 The graPHIGS Programming Interface: Technical Reference

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

 View active/inactive indicator for input

 (OFF, ON)

E GPQRVR[data—group

20]

 View active/inactive indicator for output

 (OFF, ON)

E GPQRVR[data—group

21]

 Temporary view indicator

 (OFF, ON)

E GPQRVR[data—group

9]

 HLHSR (hidden line hidden surface removal mode)

 (OFF, ON_THE_FLY)

E GPQRVR[data—group

10]

 Transparency mode

 (OFF, PARTIAL_TRANSPARENT, BLEND, BLEND_ALL)

E GPQRVR[data—group

11]

 Antialiasing mode

 (OFF, SUBPIXEL_ON_THE_FLY, NON_SUBPIXEL_ON_THE_FLY)

E GPQRVR[data—group

24]

 Color processing index I GPQRVR[data—group

12]

 Frame buffer write protect mask I GPQRVR[data—group

13]

Table of Current Viewing Operation Information:

 Total number of current viewing table entries in output priority

order

I GPQCVO[nview]

 Total number of current viewing table entries in input priority

order

I GPQCVE[nview]

For Each View Entry:

 Viewing transformation matrix 4x4xR GPQCVR[data—group

18, 19]

 View mapping matrix 4x4xR GPQCVR[data—group

22, 23]

 Window viewing coordinates 4xR GPQCVR[data—group

16, 17]

 Viewport normalized projection coordinates 6xR GPQCVR[data—group

14, 15]

 Projection reference point viewing coordinates 3xR GPQCVR[data—group

17]

 View plane distance R GPQCVR[data—group

17]

 Near distance R GPQCVR[data—group

17]

 Far distance R GPQCVR[data—group

17]

 Projection type

 (PARALLEL, PERSPECTIVE)

E GPQCVR[data—group

17]

 Window clipping indicator

 (CLIP, NOCLIP)

E GPQCVR[data—group

1]

 Near clipping indicator

 (CLIP, NOCLIP)

E GPQCVR[data—group

2]

Appendix A. State Lists 355

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

 Far clipping indicator

 (CLIP, NOCLIP)

E GPQCVR[data—group

3]

 Shielding indicator

 (OFF, ON)

E GPQCVR[data—group

4]

 Shielding color type

 (INDEXED, DIRECT)

I GPQCVR[data—group

5]

 Shielding color I or 3xR GPQCVR[data—group

5]

 View border indicator

 (OFF, ON)

E GPQCVR[data—group

6]

 View border color I or 3xR GPQCVR[data—group

7]

 View border color type

 (INDEXED, DIRECT)

I GPQCVR[data—group

7]

 View active/inactive indicator for input

 (OFF, ON)

E GPQCVR[data—group

20]

 View active/inactive indicator for output

 (OFF, ON)

E GPQCVR[data—group

21]

 Temporary view indicator

 (OFF, ON)

E GPQCVR[data—group

9]

 HLHSR (hidden line hidden surface removal mode)

 (OFF, ON_THE_FLY)

E GPQCVR[data—group

10]

 Transparency mode

 (OFF, PARTIAL_TRANSPARENT, BLEND, BLEND_ALL)

E GPQCVR[data—group

11]

 Antialiasing mode

 (OFF, SUBPIXEL_ON_THE_FLY, NON_SUBPIXEL_ON_THE_FLY)

E GPQCVR[data—group

24]

 Color processing index I GPQCVR[data—group

12]

 Frame buffer write protect mask I GPQCVR[data—group

13]

Current deferral mode

 (AS SOON AS POSSIBLE [ASAP],

 BEFORE NEXT INTERACTION GLOBALLY [BNIG],

 BEFORE NEXT INTERACTION LOCALLY [BNIL],

 AT SOME TIME [ASTI],

 WHEN APPLICATION REQUESTS IT [WAIT])

E GPQDV[defer]

Current modification mode

 (NO_IMMEDIATE_VISUAL_EFFECT,

 UPDATE_WITHOUT_REGEN, QUICK_UPDATE)

E GPQDV[modify]

Display surface empty flag

 (NOT_EMPTY, IS_EMPTY)

E GPQDV[dissurf]

Display status

 (CORRECT, DEFERRED, SIMULATED)

E GPQDV[dstat]

Update flag

 (NOT_PENDING, PENDING)

E

356 The graPHIGS Programming Interface: Technical Reference

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

Polyline Bundle Table:

 Number of polyline bundle table entries I

For Each Polyline Bundle Table Entry:

 Line type

 (SOLID_LINE, DASHED, DOTTED, DASH_DOT, LONG_DASH,

 DOUBLE_DOT, DASH_DOUBLE_DOT) (1..n)

E GPQXLR[data—group

1]

 Line width scale factor R GPQXLR[data—group

2]

 Polyline color

 Type

 Color

I or 3xR GPQXLR[data—group

3]

Line Pattern Table:

 Number of line pattern table entries I

For Each Line Pattern Table Entry:

 Number of sections in line pattern I GPQLTR[number]

 List of each section in the line pattern nxI GPQLTR[pattern]

Polymarker Bundle Table:

 Number of polymarker bundle table entries I

For Each Polymarker Bundle Table Entry:

 Marker type

 (DOT, PLUS_SIGN, ASTERISK, CIRCLE,

 DIAGONAL_CROSS) (1..n)

E GPQXMR[data—group

1]

 Marker size scale factor R GPQXMR[data—group

2]

 Polymarker color

 Type

 Color

I or 3xR GPQXMR[data—group

3]

Marker Pattern Table:

 Number of marker pattern table entries I

For Each Marker Pattern Table Entry:

 Marker pattern format

 (VECTOR)

I GPQMTR[format]

 Length of marker pattern definition I GPQMTR[length]

 Marker pattern definition I GPQMTR[data]

Text Bundle Table:

 Number of text bundle table entries I

For Each Text Bundle Table Entry:

 Text font (1..n) I GPQXTR[data—group

1]

 Text precision

 (STRING_PREC, CHAR_PREC, STROKE_PREC)

E GPQXTR[data—group

2]

 Character expansion factor R GPQXTR[data—group

3]

Appendix A. State Lists 357

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

 Character spacing R GPQXTR[data—group

4]

 Text color

 Type

 Color

I or 3xR GPQXTR[data—group

5]

Interior Bundle Table:

 Number of interior bundle table entries I

For Each Interior Bundle Table Entry:

 Interior style

 (HOLLOW, SOLID, PATTERN, HATCH,

 EMPTY) (1..n)

E GPQXIR[data—group

1]

 Interior style index (1..n) I GPQXIR[data—group

2]

 Interior color

 Type

 Color

I or 3xR GPQXIR[data—group

3]

Edge Bundle Table:

 Number of edge bundle table entries I

For Each Edge Bundle Table Entry:

 Edge flag

 (OFF, ON, GEOMETRY_ONLY)

E GPQXER[data—group

1]

 Edge line type

 (SOLID, DASHED_DOTTED_DASH_DOT,

 LONG_DASH, DOUBLE_DOT, DASH_DOUBLE_DOT) (1..n)

E GPQXER[data—group

2]

 Edge line width scale factor R GPQXER[data—group

3]

 Edge color

 Type

 Color

I or 3xR GPQXER[data—group

4]

Pattern Table:

Number of pattern table entries I

For Each Pattern Table Entry:

 Pattern array dimension (1..n) 2xI GPQPAR[drow,dcol]

 Pattern array (0..n) nxnxI GPQPAR[array]

Hatch Table:

 Number of hatch table entries I

For Each Hatch Table Entry:

 Hatch format (bit array) I GPQHR[format]

 Hatch array dimension (1...n) 2xI GPQHR[length]

 Hatch pattern array nxnxI GPQHR[data]

Character Set Table:

 Number of character set ID/ fonts in active pool I GPQFO[nfont]

For Each Active Character Set Entry:

 Character set identifier (1..255) I GPQFO[lcsid]

358 The graPHIGS Programming Interface: Technical Reference

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

 Font identifier (1..n)

(Note: The first character set entry is always the primary

character set)

I GPQFO[lfont]

Color Tables:

 Number of color tables I GPQCID[totnum]

For Each Color Table:

 Color table identifier I GPQCID[ctid]

 Color model

 (RGB, HSV, CMY, CIELUV)

I GPQCCH[model]

 Size of the color table I GPQCCH[length]

For Each Color Table Entry:

 Color components 3xR GPQXCR[color]

Light Source Table:

 Number of light source table entries I

For Each Light Souce Table Entry:

 Light source type

 (AMBIENT, DIRECTIONAL, POSITIONAL, SPOT)

I GPQLSR[lstype]

 Light source color

 Type

 Color

I or 3xR GPQLSR[color]

 Light source data nxR GPQLSR[data]

Depth Cue Table:

 Number of depth cue table entries I

For Each Depth Cue Table Entry:

 Depth cue mode I GPQDCR[data—group

1]

 Depth cue reference planes 2xR GPQDCR[data—group

2]

 Depth cue scale factors 2xR GPQDCR[data—group

3]

 Depth cue color

 Type

 Color

I or 3xR GPQDCR[data—group

4]

Color Processing Mode Table:

 Number of color processing mode table entries I

For Each Color Processing Table Entry:

 Rendering color model

 (RGB, RGB_B_ONLY)

E GPQCPR[model]

 Color quantization method

 (WORKSTATION_DEPENDENT, BITWISE,)

E GPQCPR[quant]

 Color quantization data GPQCPR[data]

Cull Size Table:

Appendix A. State Lists 359

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

 Number of cull size table entries I

For Each Cull Size Table Entry:

 Cull size R GPQCSR[size]

Highlighting Information:

 Number of classes in inclusion filter I GPQHLF[inclen]

 List of classes in inclusion filter nxI GPQHLF[incl]

 Number of classes in exclusion filter I GPQHLF[exclen]

 List of classes in exclusion filter nxI GPQHLF[excl]

Invisibility Information:

 Number of classes in inclusion filter I GPQIVF[inclen]

 List of classes in inclusion filter nxI GPQIVF[incl]

 Number of classes in exclusion filter I GPQIVF[exclen]

 List of classes in exclusion filter nxI GPQIVF[excl]

Image Definition Table:

 Number of defined images on the workstation I GPQIW[totnum]

 List of defined images on the workstation nxI GPQIW[limage]

For Each Defined Image Table Entry:

 Connection type

 (FRAME_BUFFER_COMPATIBLE, COMPONENT, INDEXED)

E GPQICH[conn]

 Color table identifier I GPQICH[ctid]

 Number of image boards that form image I GPQICH[totnum]

 List of image boards that form image nxI GPQICH[libid]

For Each Image Board:

 Bit depth of the image board I GPQIBC[depth]

 Size of the image board 2xI GPQIBC[h,v]

Image Display:

 Number of image mappings of the image I GPQIMI[totnum]

 List of image mappings of the image nxI GPQIMI[limid]

 Number of image mappings for the view I GPQIMV[totnum]

 List of image mappings for the view nxI GPQIMV[limid]

 Number of image mappings on the workstation I GPQIMW[totnum]

 List of image mappings on the workstation nxI GPQIMW[limid]

For Each Image Mapping:

 Image mapping method

 (PIXEL_BY_PIXEL)

E GPQIMC[method]

 View index I GPQIMC[vindex]

 Priority R GPQIMC[priority]

 Image definition index I GPQIMC[iindex]

 Image rectangle origin I GPQIMC[origin]

 Image rectangle size 2xI GPQIMC[size]

360 The graPHIGS Programming Interface: Technical Reference

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

 Lower left corner of the image mapping 3xR GPQIMC[p]

 Lower right corner of the image mapping 3xR GPQIMC[q]

 Upper left corner of the image mapping 3xR GPQIMC[r]

Break Action:

 Trigger type I GPQBKS[trigger]

 Trigger qualifier I GPQBKS[trigger]

 Number of locator devices I N/A

 Number of stroke devices I N/A

 Number of valuator devices I N/A

 Number of choice devices I N/A

 Number of pick devices I N/A

 Number of string devices I N/A

Table of Input Devices: Entries in this group do not exist for workstations of category output.

For Every Logical Input Device of Class Locator:

 Operating mode

 (REQUEST, PRELE, EVENT)

E GPQLC[mode]

 Echo switch

 (NOECHO, ECHO)

E GPQLC[echosw]

 Prompt and echo type I GPQLC[echo]

 Current echo area (DC) 6xR GPQLC[area]

 Length of locator data record I GPQLC[datalen]

 Current locator data record GPQLC[data]

 Current input character set identifier E GPQICS[csid]

 Initial view index I GPQLC[view]

 Initial locator position (WC) 3xR GPQLC[pos]

 Current trigger list(s) (one per trigger list identifier) n (3xI) GPQITS[ltrigs]

For Every Logical Input Device of Class Stroke:

 Operating mode

 (REQUEST, PRELE, EVENT)

E GPQSK[mode]

 Echo switch

 (NOECHO, ECHO)

E GPQSK[echosw]

 Prompt and echo type I GPQSK[echo]

 Current echo area (DC) 6xR GPQSK[area]

 Length of stroke data record I GPQSK[datalen]

 Current stroke data record GPQSK[data]

 Current input character set identifier I GPQICS[csid]

 Initial view index I GPQSK[view]

 Number of points in initial stroke I GPQSK[npoint]

 List of initial points (WC) nxR GPQSK[point array]

 Input buffer size I GPQSK[buffer]

Appendix A. State Lists 361

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

 Editing position I GPQSK[editpos]

 Current trigger list(s) (one per trigger list identifier) n (3xI) GPQITS[ltrigs]

For Every Logical Input Device of Class Valuator:

 Operating mode

 (REQUEST, PRELE, EVENT)

E GPQVL[mode]

 Echo switch

 (NOECHO, ECHO)

E GPQVL[echosw]

 Prompt and echo type I GPQVL[echo]

 Current echo area (DC) 6xR GPQVL[area]

 Length of valuator data record I GPQVL[datalen]

 Current valuator data record I GPQVL[data]

 Current input character set identifier I GPQICS[cisd]

 Current initial value R GPQVL[ivalue]

 Current range low value R GPQVL[lovalue]

 Current range high value R GPQVL[hivalue]

 Current trigger list(s) (one per trigger list identifier) n (3xI) GPQITS[ltrigs]

For Every Logical Input Device of Class Choice:

 Operating mode

 (REQUEST, PRELE, EVENT)

E GPQCH[mode]

 Echo switch

 (NOECHO, ECHO)

E GPQCH[echosw]

 Prompt/echo type E GPQCH[echo]

 Current echo area (DC) 6xR GPQCH[area]

 Length of choice data record I GPQCH[datalen]

 Current choice data record GPQCH[data]

 Current input character set identifier I GPQICS[csid]

 Initial choice number I GPQICS[choice]

 Current trigger list(s) (one per trigger list identifier) n (3xI) GPQITS[ltrigs]

For Every Logical Input Device of Class Pick:

 Operating mode

 (REQUEST, PRELE, EVENT)

E GPQPK[mode]

 Echo switch

 (NOECHO, ECHO)

E GPQPK[echosw]

 Prompt and echo type I GPQPK[echo]

 Current echo area (DC) 6xR GPQPK[area]

 Length of pick data record I GPQPK[datalen]

 Current pick data record GPQPK[data]

 Current input character set identifier I GPQICS[csid]

 Pick path order

 (TOP_FIRST, BOTTOM_FIRST)

E GPQPK[order]

 Current pick path depth I GPQPK[depth]

362 The graPHIGS Programming Interface: Technical Reference

Table 133. Workstation State List (WSL) Data Type Field Description (continued)

Description of Field Data Type Inquiry

 Current pick path nxI GPQPK[pickpath]

 Pick aperture R GPQPKA[size]

 Pick selection criteria

 (FIRST, LAST, ALL,

 FIRST_VISIBLE, LAST_VISIBLE, ALL_VISIBLE)

E N/A

 Pick correlation state

 (OFF, ON)

E N/A

Pick Filters:

 Number of classes in inclusion filter I GPQPK[inclen]

 List of classes in inclusion filter nxI GPQPK[incl]

 Number of classes in exclusion filter I GPQPK[exclen]

 List of classes in exclusion filter nxI GPQPK[excl]

 Current trigger list(s) (one per trigger list identifier) n (3xI) GPQITS[ltrigs]

For Every Logical Input Device of Class String:

 Operating mode

 (REQUEST, PRELE, EVENT)

E GPQST[mode]

 Echo switch

 (NOECHO, ECHO)

E GPQST[echosw]

 Prompt and echo type I GPQST[echo]

 Current echo area (DC) 6xR GPQST[area]

 Length of string data record I GPQST[datalen]

 Current string data record GPQST[data]

 Current input character set identifier I GPQICS[csid]

 Length of initial string I GPQST[strlen]

 Initial string S GPQST[string]

 Input buffer size I GPQST[buffer]

 Initial editing position I GPQST[editpos]

 Current trigger list(s) (one per trigger list identifier) n (3xI) GPQITS[ltrigs]

The graPHIGS API Error State List (ESL)

The Error State List provides information on the current graPHIGS API error state.

The right-hand column lists the inquiry function that you can use when you want your application to know

the error states of the system.

Data Type Field

The following correspondence applies to the abbreviated data types:

 Table 134. Error State List (ESL) Data Type Field Definition

Data Type Definition

I Integer A whole number

R Real A floating-point number

Appendix A. State Lists 363

Table 134. Error State List (ESL) Data Type Field Definition (continued)

Data Type Definition

S String A character string

E Enumeration A data type comprised of a set of values. The set is

defined by enumerating the identifiers denoting the

values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) x t (data type) indicates

a collection of data of that type. This can be indicated in

one of two ways:

v By using notation such as 3xR (three real numbers),

which could specify something like the x, y, and z

coordinates of a three-dimensional point or RGB

values

v By using a variable number such as nxI, which

specifies a collection of n integers.

 Table 135. Error State List (ESL) Data Type Field Description

Description of Field Data Type Inquiry

 Error state

 (OFF, ON)

E N/A

 Error reporting mode

 (OFF, ON)

E GPQEMO[mode]

Error File:

 Name S (passed on GPOPPH)

Information of Last Error:

 Workstation identifier I (passed to User Error

Handler)

 Message number I GPQEMS[number]

 Message text S GPQEMS[message]

Utility Function State List (USL)

Utility functions aid in the definition of transformation viewing matrices. The USL is a temporary storage

facility.

Data Type Field

The following correspondence applies to the abbreviated data types:

 Table 136. Utility Function State List (USL) Data Type Field Definition

Data Type Definition

I Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is

defined by enumerating the identifiers denoting the

values.

364 The graPHIGS Programming Interface: Technical Reference

Table 136. Utility Function State List (USL) Data Type Field Definition (continued)

Data Type Definition

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) x t (data type) indicates

a collection of data of that type. This can be indicated in

one of two ways:

v By using notation such as 3xR (three real numbers),

which could specify something like the x, y, and z

coordinates of a three-dimensional point or RGB

values

v By using a variable number such as nxI, which

specifies a collection of n integers.

 Table 137. Utility Function State List (USL) Data Type Field Description

Description of Field Data Type Inquiry

View reference point (WC) 3xR N/A

View plane normal (WC) 3xR N/A

View up (WC) 3xR N/A

Appendix A. State Lists 365

366 The graPHIGS Programming Interface: Technical Reference

Appendix B. Event Data Formats

Event Summary

The following table summarizes all events supported by the graPHIGS API. In this table, columns titled as

″major″ and ″minor″ show the contents of major and minor code parameters for various event related

functions. When the column has ″None″, the corresponding parameter is not set by the graPHIGS API.

The last column shows a GET function to be used for retrieving the detail event data of each event. When

it has ″None″, the event has no event data to be retrieved. In this case, a GET function will result in an

error.

 Table 138. Supported Events

Class Meaning Major Minor Data

1 Locator Workstation ID Device number Locator

2 Stroke Workstation ID Device number Stroke

3 Valuator Workstation ID Device number Valuator

4 Choice Workstation ID Device number Choice

5 Pick Workstation ID Device number (Extended) Pick

6 String Workstation ID Device number String

11 Locator_Break Event Workstation ID Device Number None

12 Stroke_Break Event Workstation ID Device Number None

13 Valuator_Break Event Workstation ID Device Number None

14 Choice_Break Event Workstation ID Device Number None

15 Pick_Break Event Workstation ID Device Number None

16 String_Break Event Workstation ID Device Number None

101 Link switch out Workstation ID 0 None

102 Link switch in Workstation ID 0 None

103 Update completion Workstation ID Display status None

104 Input overflow events Workstation ID 0 None

105 Window Resize Notification Event Workstation ID 0 None

106 Window Exposure Notification Event Workstation ID 0 Exposure data

107 Window Deletion Notification Event Workstation ID 0 None

201 Broadcast message Sender supplied Sender supplied Message

202 Private message Sender supplied Sender supplied Message

301 Threshold Exceeded Structure Store ID Threshold value None

401 Error Event Error Number 0 None

Event Data Format

When the application specifies an event exit routine, the following event data and its length are also

passed to the routine.

© Copyright IBM Corp. 1994, 2002 367

Locator Event (Event Class 1)

 WORD 1 | view | Fullword integer

 2-4 | position | 3 short floating-point numbers

 view View index in which the locator position resides.

position Locator 3-D position in world coordinates.

The length of this event data is always 16.

Stroke Event (Event Class 2)

 WORD 1 | view | Fullword integer

 2 | number | Fullword integer

 3-n | plist | Array of 3 short

 / / floating-point numbers

 | |

 view View index in which the stroke points reside.

number Number of points in the stroke point list.

plist A list of 3-D points in world coordinates.

The length of this event data is n x 12 + 8.

Valuator Event (Event Class 3)

 WORD 1 | value | Short floating-point number

 value Valuator value.

The length of this event data is always 4.

Choice Event (Event Class 4)

 WORD 1 | status | Fullword integer

 2 | choice | Fullword integer

 status Choice device status. This parameter takes one of the following values:

1 = NO_CHOICE

2 = OK

choice Choice alternative. When the choice status is 2 = OK, this parameter includes one of the

choice alternatives available on the choice device. Otherwise, this parameter may contain any

number.

The length of this event data is always 8.

368 The graPHIGS Programming Interface: Technical Reference

Pick Event (Event Class 5)

 WORD 1 | status | Fullword integer

 WORD 1 | status | Fullword integer

 2 | depth | Fullword integer

 3-n | n-path | Array of 3 fullword integers

 / /

 | |

 WORD 1 | status | Fullword integer

 2 | view | Fullword integer

 3-18 | modelx | 16 short floating-point numbers

 | |

 19-21 | pos | 3 short floating-point numbers

 | |

 22 | depth | Fullword integer

 23-n | x-path | Array of 4 fullword integers

 / /

 | |

 status Pick status. This parameter takes one of the following values and specifies which format is

actually used.

0 = NO_PICK

1 = OK_NORMAL PICK

2 = OK_EXTENDED PICK

 When the pick status is 0 = NO PICK, the first format is used and so the length of the

event data is 4. Otherwise, the event data is represented by the second or third

format according to the pick device’s type. If the device is the normal pick device, the

second format is used. If the device is the extended pick device, the third format is

used.

depth Pick path depth.

n-path Normal pick path. This parameter is a list of pick path triplets, — a structure identifier, a pick

identifier and an element number.

view View index of a view in which the picked primitive resides.

modelx Composite modeling transformation applied to the picked primitive. Elements of the

transformation matrix are returned in the order M11,M12,M13,M14...

pos 3-D position in NPC where the center of pick aperture existed when the pick occurred.

x-path Extended pick path. This parameter is a list of pick path quadruples, — a structure identifier, a

pick identifier, a label identifier and a structure element number.

String Event (Event Class 6)

 WORD 1 | length | Fullword integer

Appendix B. Event Data Formats 369

2-n | string | Character string

 / /

 | |

 length Length of the character string in bytes (does not include the length field itself).

string Character string. When the length of this character string is not a multiple of 4, up to 3

padding bytes are supplied. Therefore, the length of this event data is ((length+7) /4)x4.

Window Exposure Event (Event Class 106)

 WORD 1 | Exposure data | 0-31 bits

 WORD 2 | Exposure data | 32-63 bits

 exposure data 64 bits of data indicating which of the views in numerical

order are affected by the exposure event. Bit 0 is the flag

for view 0 and is the most significant bit. Each bit is set as

follows:

0 = NOT_AFFECTED_BY_EXPOSURE

1 = IS_AFFECTED_BY_EXPOSURE

Application Message Event (Event Class 201 and 202)

 WORD 1 | length | Fullword integer

 2-n | message data | Byte string

 / /

 | |

 length Length of the character string in bytes (does not include

the length field itself).

message data A byte string supplied by the sender. When the length of

this datais not a multiple of 4, up to 3 padding bytes are

supplied. Therefore, the length of this event data is

((length+7) /4)x4.

370 The graPHIGS Programming Interface: Technical Reference

Appendix C. Plotting with graPHIGS

The graPHIGS API provides the capability for plotting CGM and GDF files produced by the graPHIGS API.

You can plot GDF files on an IBM Color Plotter (6180, 6182, 6184, 6186, 7371, 7372, 7374, 7375). You

can also plot GDF files on non-IBM plotters, as described in this section. You can plot CGM files on any

plotter with HP GL2 support. For a list of supported plotters, as well as initial set-up instructions, see the

appropriate graPHIGS API installation or customization manual:

v The graPHIGS Programming Interface: Customization and Problem Diagnosis

v The GDDM/graPHIGS Programming Interface: Installation and Problem Diagnosis.

Plotting on the RS/6000

When you select IBM plotter support at installation time, the cpsI1 plot module for IBM plotters is installed

in the /usr/lpd subdirectory. Likewise, if you select CalComp and/or Versatec support, the cpsC1 plot

module for CalComp plotters and/or the cpsVI plot module for Versatec plotters is installed in the /usr/lpd

subdirectory.

Before proceeding, follow the instructions for setting up your environment:

 For IBM Plotters The graPHIGS Programming Interface: Customization and

Problem Diagnosis

For CalComp Plotters /usr/lpd/README.ccp

Note: The graPHIGS API cpsC1 backend produces

CalComp 906/907 format data.

For Versatec Plotters /usr/lpd/README.VERSA

For HP GL2 Plotters The graPHIGS Programming Interface: Customization and

Problem Diagnosis and /usr/lpd/cgm2hp2.readme

You can use the graPHIGS API plot modules as printer

backends, or execute them directly, bypassing the print

queueing facilities.

Note: The graPHIGS API plot modules use the current

working directory for certain input and output files. See the

discussion of the -ldir option for more information.

Plotting GDF Files

Executing Plot Modules Directly

To plot a file, the following syntax can be used:

/usr/lpd/plotmodule -option filename.gdf

 ^ |

 |------|

where:

v plotmodule is one of: cpsI1 (for IBM), cpsC1 (for CalComp), or cpsV1 (for Versatec).

v filename.gdf is the name of the file to be plotted. filename is derived from the connection identifier. The

GDF filename must be the last parameter passed to the plot module

v - option can be any of the options described below for controlling certain plotting functions.

Note:

v The symbol & may be added after the GDF filename to plot in the background:

© Copyright IBM Corp. 1994, 2002 371

/usr/lpd/cpsI1 -option filename.gdf &

 ^ |

 |------|

v If you are using the IBM plot module, cpsI1, and plotting to a plotter connected to a serial port, the

option -ttyx must be specified, and must appear as the first option after the plot module name.

-ttyx is the name of the tty port returned when the port was defined (for example, tty0, tty1,

etc.). The -ttyx option is not needed if -nopl is specified to plot IBM data to a file.

Examples:

1. To plot the file tmp0001.gdf to an IBM plotter attached to the tty0 port:

 /usr/lpd/cpsI1 -tty0 tmp0001.gdf

2. To plot the same file in the background, and to rotate the plot 90 degrees:

 /usr/lpd/cpsI1 -tty0 -rot tmp0001.gdf &

3. To convert the file tmp0001.gdf to CalComp data:

 /usr/lpd/cpsC1 -ispi tmp0001.gdf

4. To convert the file tmp0001.gdf to Versatec data:

 /usr/lpd/cpsV1 -ispi tmp0001.gdf

Using Plot Modules as Printer Backends

A plot can be scheduled through smit or by using the enq command.

 enq -P queuename -o option filename.gdf

 ^ |

 |--------|

where:

v queuename is the name of the print queue.

v -option is any option to be passed to the backend program.

v filename.gdf is the name of the GDF file to be plotted.

Plotting Options

The following is a list of optional parameters which can be passed to the plot modules. You can specify

plot options on the command line or you can include, in your plot command, an option that identifies a file

containing the plot options you wish to use. This is particularly useful if you use many options or if you use

the same options repeatedly.

Note: When they are used in the option file, some options use syntax different from that described below.

See the description of using options in an option file.

372 The graPHIGS Programming Interface: Technical Reference

-af Area Fill (-af) allows for the generation of plotter hardware polygon commands, which

greatly reduces the amount of data the application sends to the plotter for polygons.

These commands are not supported on the 7371, 7372, or the 6180 plotters.

When you specify the -af option, the graPHIGS API must determine the maximum

number of polygon vertices that can be sent to your plotter. This value is called

max_poly_points and has a default of 2000. You can override the default by specifying

a new value in the option file (not on the command line) using the max_poly_points

keyword. If this value is exceeded by your polygon data, the area fill will be processed

by software.

Note: -af is supported on the 6180 if a Graphics Enhancement Cartridge (P/N

5452389) is installed on the plotter.

Early models of the 7374 and 7375 plotters did not support polygon mode

commands. If you are using this option parameter while plotting to one of these

plotters, you may experience unexpected area fill output. To plot normally, remove

this option from the list of parameters.

Supported on: cpsI1

-angXX Angles XX (-angXX) is used to chop angles below XX degrees where XX is an angle

between 01 and 40. The default is 40 if -angxx is not specified. See the description of

-nochop.

Supported on: cpsI1, cpsC1, cpsV1

-chopall Chop all (-chopall) forces chopping of both inside and outside facing angles. See the

descriptions of -chopout and -nochop. -chopall is the default when no other chopping

options are used.

Supported on: cpsI1, cpsC1, cpsV1

-chopout Chop Outside (-chopout) forces chopping of outside facing angles only. See the

description of -nochop.

Supported on: cpsI1, cpsC1, cpsV1

-c16 CalComp 16 (-c16) specifies that 16 colors are to be processed when using the

information.

Supported on: cpsC1

-es Exact Scaling (-es) causes the plot to be scaled to the appropriate size (for example,

1mm design = 1mm plot length) if you specify the -es parameter option and use the

graPHIGS API escape function 1003 (GDF/CGM plot size).

Supported on: cpsI1

-esx Exact Scaling, Expanded (-esx) plotting area functions as -es above, but the plotter

hard-clip limits are used, allowing for a larger plotting area. However, plotter pinch

wheels may run over plotted lines causing ink smears. Refer to your plotter operations

manual for more information on hard-clip limits. The page size is determined from the

escape function 1003 (GDF/CGM plot size).

Supported on: cpsI1

-hinXX=nn.nnn Hatchspace (inches) allows you to specify the spacing for a fill pattern where

nn.nnn=.001-99.999, defining the space in inches, and XX=01-16, identifying the fill

pattern. For example, -hin12=1.275. The pattern number specified refers to the

graPHIGS pattern only when the default hatch table is used. This option is used in

conjunction with either the -es or -esx option.

Appendix C. Plotting with graPHIGS 373

-hcmXX=nn.nnn Hatchspace (centimeters) allows you to specify the spacing for a fill pattern where

nn.nnn=0.001-99.999, defining the space in centimeters, and XX=01-16, identifying the

fill pattern. For example, -hcm08=0.075. The pattern number specified refers to the

graPHIGS pattern only when the default hatch table is used. This option is used in

conjunction with either the -es or -esx option.

Supported on: cpsI1, cpsC1, cpsV1

-hsfix Hatchspace (fixed) forces fixed spacing of fill patterns regardless of plot size and scale.

This option is used in conjunction with either the -es or -esx option.

Supported on: cpsI1, cpsC1, cpsV1

-hsprop Hatchspace (proportional) forces proportional spacing in fill patterns by maintaining a

constant number of lines with spacing proportional to the scale of the data file. This

option does not affect any fill patterns with fixed values set by the -hinXX or hcmXX

options. This option is used in conjunction with either the -es or -esx option.

Supported on: cpsI1, cpsC1, cpsV1

-ispi Industry Standard Plotting Interface (-ispi) enables the use of the Industry Standard

Interface calls.

Note: The -es option is automatically in effect when -ispi is used.

Supported on: cpsC1, cpsV1

-ldir Local directory specifies which directory is to be used for plotting inputs and outputs.

This directory will be passed to the graPHIGS API plotting backends so that plot files

need not be restricted to the current directory or the /usr/lpd/qdir directory when

queueing facilities are used. For example, the command,

enq -Pgdf -o -ldir/u/design/plot fileb.gdf

tells the graPHIGS API plotting backend to use the /u/design/plot directory for input

and output, however, the current directory would still be searched for fileb.gdf because

the -ldir option does not affect the search location for GDF files when queueing is used.

The qdaemon automatically passes a fully qualified pathname, based on your command

line input, to the backend. If direct backend plotting is used, the -ldir option affects all

files.

The log.fil, generated whenever a plotting backend is executed, includes a message

indicating whether -ldir was successfully used.

The -ldir option cannot be specified in an option file.

Supported on: cpsI1, cpsC1, cpsV1

-nobord No border suppresses the drawing of a smoothing edge around the perimeter of filled

polygons drawn with the edge flag off. The smoothing edge eliminates the jagged edge

often seen in filled circles drawn with a wide pen. It consists of a solid polyline of the

same color specified for the interior fill, drawn in a width of 1. Because the smoothing

edge centers on the border of the polygon, the radius will be drawn half a pen-width

larger than specified. If this is a problem specify -nobord and use a smaller pen-width to

reduce the jagged edges.

Supported on: cpsI1, cpsC1, cpsV1

374 The graPHIGS Programming Interface: Technical Reference

-nochop No chopping (-nochop) turns all chopping off. When plotting wide lines using the default

multiple pen stroking, adjacent line segments are connected using a mitered join style.

This can cause undesired results when adjacent line segments form a sharp angle. The

join style applied can cause the join at one of these angles to ’spike’ to a point farther

than expected. This can be seen quite often when plotting arrowheads or geometric

text.

By default, this effect is avoided by chopping the spike back to the desired position

when stroking wide lines, but specifying -nochop turns all chopping off. The default

chopping occurs for any angle less than 40 degrees. Both inside and outside facing

angles are chopped by default.

This parameter is ignored if -nolw is being used.

Supported on: cpsI1, cpsC1, cpsV1

-noin No Initialization (-noin) allows the user to set up the P1 and P2 positions on the plotter.

This allows the user to position the plot anywhere on the paper. For more information

on P1 and P2, refer to your plotter operations manual.

Supported on: cpsI1

-nolw No Line Width (-nolw) disables line width processing and causes lines to be single

stroked. This can be used to improve pen plotting performance or to work in conjunction

with the -pens parameter described below.

Supported on: cpsI1, cpsC1, cpsV1

-nopl No plot (-nopl) redirects the IBM-GL output to the file fname.gl.

Supported on: cpsI1

-optf Option file is used as an alternative to entering plotting options on the command line.

You can specify some or all of your options in an option file that is specified with a

filename right after the -optf option parameter, for example -optfmyopt1.fil identifies

myopt1.fil as the option file to be used in the plot.

Note: There is no blank between the -optf option and the filename specified.

Although only one option file may be specified from the command line, an option file

may call additional option files up to a total of ten. Options specified on the command

line, however, always override those specified in an option file.

Supported on: cpsI1, cpsC1, cpsV1

-pens The -pens parameter option causes the file pentbl.fil to be used for mapping GDF color

and line width values to the actual pens being used on the plotter. Use this option to

provide the plotting routines with information about the plotter pens. This information is

then used when deciding which pen number to select based on the current line color

and thickness. The pentable option can be used in the option file to identify a different

filename for pen information.

The pentbl.fil file should be placed in the current working directory. This file is only

accessed when -pens is specified.

Note: If you do not specify -pens, then the default pen selection is based on a default

set of pen values, which is the same as the example pentbl.fil shown.

Supported on: cpsI1, cpsC1, cpsV1

-ps=x Paper Size (-ps=x) determines the page size, where x is defined as a, b, c, d, or e. This

option parameter is needed to allow for proper area fill and line thickness when plotting

data to a file, and is not needed when plotting directly to an IBM plotter. It is not

necessary to use -ps=x when -es or -ispi is used, because the page size is determined

from the exact scale escape function 1003 (GDF/CGM plot size). If you do not specify

the -ps=x option, the default value is -ps=a.

Supported on: cpsI1

Appendix C. Plotting with graPHIGS 375

-rot >Rotates (-rot) the plot 90 degrees. This is not supported on the 7371 and cannot be

used in conjunction with -noin.

Supported on: cpsI1

-slow Slow (-slow) pen speed, slows down the the plotter pen velocity. Use this parameter

option for transparencies.

Supported on: cpsI1

-ttyX The serial port option allows you to specify the name of the port, tty0 for example,

where the plotter is connected. This option must be the first one specified after the plot

module name. The default is none. This option is not used if -nopl is specified.

Supported on: cpsI1

VEROUT Versatec output is for use with the cpsV1 command. This option allows you to specify

the path and filename for the Versatec plot output file. For example,

cpsV1 -ispi -o -VEROUT$HOME/output.plot fname.gdf

would produce a plot output file in the user’s home directory with the name, output.plot

Supported on: cpsV1

-VMSGS Versatec message is for use with the cpsV1 command. This option allows you to

specify the path and filename for the Versatec plot summary and error messages file.

See -VEROUT for a command example.

Supported on: cpsV1

-VPARM Versatec parameter is for use with the cpsV1 command. This option allows you to

specify the path and filename for the Versatec plotting parameters file. See -VEROUT

for a command example.

Supported on: cpsV1

-v16 Versatec 16 (-v16) specifies that 16 colors are to be processed when using the more

information.

Supported on: cpsV1

Using the Option File

You can specify options in an option file by using -optf. You can create the option file by using an editor

and following these syntax rules:

v All options must begin in column 1.

v Each option must be specified as exceptions cited below.

v Each option must be followed by a colon (:) delimiter and a repetition of the option without the leading

hyphen (-), or by the word none. Specifying none turns the option off.

v Comment lines can be used by specifying a number sign (#) in column 1.

v Continuation lines are identified by specifying a backslash (\) at the end of the preceding line.

For example:

option file for cpsI1

-es:es

-pens:pens

-nopl:none

Exceptions:

 -chopall, -chopout, -nochop These options are mutually exclusive. Specifying the desired option turns the others

off. Specifying none is not supported for these options.

376 The graPHIGS Programming Interface: Technical Reference

-c16 and -v16 These options are specified in the option file using the same syntax as that to force

either of these option off, specify -cv16:none in an option file.

hatchspace The -hinXX and -hcmXX option parameters are not used in an option file. Instead,

use hatchspaceX:in=nn.nnn or hatchspaceX:cm=nn.nnn where X is any hatch pattern

from 1 to 16, and nn.nnn is any spacing value, expressed in inches or centimeters,

from 0.001 to 99.999. If hatchspace is specified for any hatch pattern in both an

option file and on the command line, then the value from the command line has

priority.

Supported on: cpsI1, cpsC1, cpsV1

log_name In order to use the logfile option, you must specify it as the first option in the first

option file. Otherwise, the default log file log.fil will be used.

There are three ways in which you can use the logfile option:

Specify log_name:date when you want to create a file that will include the current

date in the filename. For example, apr05.log would be created for the first plot run on

April 5, and would be used for each successive plot that day with each log appended

to the end of the previous log.

Use logfile to have the same filename as the gdf file to be plotted. For example, a

plot of file gear.gdf would generate a logfile named gear.log.

Use log_name:XXXXXX to specify a logfile name of your choice in an operating

system-recognizable format. The logfile is affected by the current directory.

Supported on: cpsI1, cpsC1, cpsV1

max_poly_points For use with the -af option, max_poly_points specifies the maximum number of

polygon vertices that can be sent to your plotter. The default value for

max_poly_points is 2000 and the maximum is 8185 points. If you do not specify -af,

then max_poly_points is ignored.

The graPHIGS API generates plotter data using approximately 11 bytes per

coordinate pair. Depending on size of your plotter’s polygon buffer (the plotter’s Guide

to Operations contains this information), you may be able to optimize performance by

setting the maximum vertices higher or lower than the default value of 2000. For

example, a 1k polygon buffer might operate most efficiently with max_poly_points=90

because 11 bytes[default]90=990. Any vertices exceeding the 1k capacity of the

plotter hardware are handled by the backend, reducing performance. The 11

bytes/vertex formula is only an approximation, however, and trial and error may reveal

a more efficient setting.

Supported on: cpsI1

optfname Additional option files are specified differently within an option file than on the

command line. The -optf parameter is not recognized within an option file. Instead,

specify it as optfname:, for example, optfname:myopt2.fil could be used to call

myopt2.fil from within another option file.

Use fully-qualified pathnames with the optfname option.

Supported on: cpsI1, cpsC1, cpsV1

pentable Specify pentable:XXXXX.fil to identify a file other than the default pentbl.fil for use

when the pens option is specified. For example, pentable:/tmp/carousl2.fil would

identify /tmp/carousl2.fil for use as a pentable file.

Use fully-qualified pathnames with the pentable option.

Supported on: cpsI1, cpsV1

Appendix C. Plotting with graPHIGS 377

serial_port To select a serial port from within an option file, specify serial_port:XXX, where XXX

identifies the port. For example, serial_port:tty3 selects plotter port tty3. On the

command line, the serial port is specified as the first option following the plot

command, and includes only the port name preceded by a hyphen, for example,

cpsI1 -tty1.

Supported on: cpsI1

Option Priority: Options are assigned values in the order in which they are processed. For example, if

an option file sets the paper size (-ps=a:ps=a) but then calls a second option file that also sets the paper

size (-ps=b:ps=b), size b remains in effect. However, if the first option file specifies -ps=a:ps=a at a point

after it has called the second option file, then paper size a remains in effect because it was the last paper

size setting processed. Command line options supersede those specified in any option file. Thus, if you

specify a plotting option differently on the command from your option file specifications, the command line

options are used.

In the following example, an option file (myopt1.fil) is called, which in turn, calls myopt2.fil:

cpsI1 -ps=b -optfmyopt1.fil wheelc3.gdf

If myopt1.fil contains:

option file 1

-logfilename:mylog.fil

-chopout:chopout

optfname:myopt2.fil

-ang35:ang35

-pens:pens

And myopt2.fil contains:

option file 2

-ps=c:ps=c

-pens:none

The options that remain in effect for the plot are chopout, ang35, and pens because the ang40 and

-pens:none specifications in myopt2.fil are superseded by the specifications later encountered when

processing returns to myopt1.fil. The paper size is determined by -ps=b on the command line.

Plotting Options Summary

The following table summarizes the plotting options:

 Table 139. Plotting Options

Option cpsI1 cpsC1 cpsV1

-af X

-angXX X X X

-chopall X X X

-chopout X X X

-c16 X

-es X

-esx X

-hinXX=nn.nnn X X X

-hcmXX=nn.nnn X X X

-hsfix X X X

-hsprop X X X

378 The graPHIGS Programming Interface: Technical Reference

Table 139. Plotting Options (continued)

Option cpsI1 cpsC1 cpsV1

-ispi X X

-ldir X X X

-nobord X X X

-nochop X X X

-noin X

-nolw X X X

-nopl X

-optf X X X

-pens X X X

-ps=x X

-rot X

-slow X

-ttyX X

-VEROUT X

-VMSGS X

-VPARM X

-v16 X

hatchspace X X X

log_name X X X

max_poly_points X

optfname X X X

pentable X X

serial_port X

Controlling Directories

Depending on the combination of options you specify, plot log and output files can be written to the current

directory, the /usr/lpd/qdir directory, or another directory of your choice. The following sequence of events

explains how the various directories are selected:

1. If the enq command is used to schedule the plot:

a. The qdaemon adds the full path to the filename of the gdf data file.

b. The qdaemon changes the current directory to /usr/lpd/qdir.

If enq. is not used, then execution

2. The cps X plot module determines the directory as follows:

a. Is the -ldir option used? If so, change to the directory specified by the -ldir option and continue

b. Is GPPLOTDIR defined as a system environment variable? If so, change to the directory specified

in GPPLOTDIR and continue as shown in If not,

c. Is PWD defined as a system environment variable? If so, change to the directory specified in PWD

and continue as If not, the current directory is not changed.

3. The plot is executed in whatever directory is current.

4. The gdf, logfile, pentable file, and option files are opened using the exact names specified. If enq was

used to schedule the plot, then the gdf file has a fully-qualified pathname.

Appendix C. Plotting with graPHIGS 379

5. Is the -nopl option specified? If so, then the output gl file is opened using the name of the gdf file, and

the .gdf extension is replaced by the .gl extension. If the gdf filename was a fully qualified pathname,

then the gl file will be opened as a fully qualified filename.

pentbl.fil description

 Table 140. pentbl.fil File

pentbl.fil File

 2 <------ Row 1: Options

 1 1 0.3 --

 2 2 0.3 |

 3 3 0.3 |

 4 4 0.3 <---| Rows 2 - 9: Pen data

 5 5 0.3 |

 6 6 0.3 |

 7 7 0.3 |

 8 8 0.3 --

--- --- -----

 | | |

 | | |-- Diameter (columns 9 - 15): Range = 0.0 - 99.9999 (mm)

 | |--Color (columns 3 - 8): Range = 0 - 65535

 |--Slot (columns 1 - 2): Range = 1 - 8

 Table 141. pentbl.fil File Parameters

Row Columns Type Range Description

1 (Options) 1-2 Integer 1,2 Search Priority

1. Line thickness (LWSC) - the pen will be selected

whose pen tip diameter is most appropriate for the

current line thickness. If more than one exists, then

the correct color pen will be selected from these

choices.

2. Color index (CI) - the pen will be selected whose

color matches the current color index. If more than

one exists, these will be searched for the one

whose pen tip diameter is most appropriate for the

current line thickness.

2-9 (Pen

data)

1-2 Integer 1-8 (or 1-16,

see below)

Slot in pen carousel on plotter. This field has been

included for clarity and its values are ignored. Note:

There must be a minimum of eight pen-data entries

unless the -c16 or -v16 options are used which require

a minimum of 16 pen-data entries.

380 The graPHIGS Programming Interface: Technical Reference

Table 141. pentbl.fil File Parameters (continued)

Row Columns Type Range Description

2-9 (Pen

data)

3-8 Integer 0,1,2, ...

65535

Color of pen. This field specifies the color of the pen in

the corresponding slot in the carousel. The following

GDDM/GDF defined values are supported by the

graPHIGS API. See below for the R,G,B components

associated with these colors.

 1. Blue

 2. Red

 3. Magenta

 4. Green

 5. Cyan

 6. Yellow

 7. Black

 8. Background

 9. Dark Blue

10. Orange

11. Purple

12. Dark Green

13. Dark Cyan

14. Mustard

15. Grey

16. Brown

2-9 (Pen

data)

9-15 Floating-point 0.0 ...

99.9999

Pen tip diameter (in millimeters). This value will be

used to map line thickness to an appropriate pen

number based on the current line width scale factor

and the graPHIGS API nominal line width of 0.269mm.

Red, Green, Blue Components of GDF colors

The graPHIGS colors described above can be derived from Red, Green, and Blue components in the

following way:

Find the values of Rval, Gval, and Bval using the following chart and the appropriate Red, Green, and

Blue components, then refer to the table below to find the color based on these values:

 Table 142. Color Values

Amount of Red Value of Rval

<0.33 0

<0.66 1

>=0.66 2

Amount of Green Value of Gval

<0.25 0

<0.50 1

<0.75 2

>=0.75 3

Amount of Blue Value of Bval

<0.33 0

<0.66 1

Appendix C. Plotting with graPHIGS 381

Table 142. Color Values (continued)

Amount of Red Value of Rval

>=0.66 2

 Table 143. R,G,B Mapping Table

Rval Gval Bval Color Number Color

0 0 0 8 Background (not drawn)

0 0 1 9 Dark Blue

0 0 2 1 Blue

0 1 0 12 Dark Green

0 1 1 9 Dark Blue

0 1 2 1 Blue

0 2 0 12 Dark Green

0 2 1 13 Turquoise

0 2 2 5 Cyan

0 3 0 4 Green

0 3 1 13 Turquoise

0 3 2 5 Cyan

1 0 0 2 Red

1 0 1 11 Purple

1 0 2 3 Magenta/Pink

1 1 0 16 Brown

1 1 1 15 Grey

1 1 2 3 Magenta/Pink

1 2 0 16 Brown

1 2 1 15 Grey

1 2 2 15 Grey

1 3 0 6 Yellow

1 3 1 15 Grey

1 3 2 7 Black

2 0 0 2 Red

2 0 1 11 Purple

2 0 2 3 Magenta/Pink

2 1 0 10 Orange

2 1 1 11 Purple

2 1 2 3 Magenta/Pink

2 2 0 14 Mustard

2 2 1 15 Grey

2 2 2 7 Black

2 3 0 6 Yellow

2 3 1 7 Black

2 3 2 7 Black

382 The graPHIGS Programming Interface: Technical Reference

Mapping GDF Colors to Pen Numbers

By default, all three plotting backends will map the 16 GDF to see how this can be changed for the

CalComp and Versatec backends.

If the -pens option was NOT specified, then the mapping from 16 colors to 8 pens is done using a ’MOD 8’

function. That is, color 9 is mapped to pen 1, color 10 is mapped to pen 2, etc. The exception to this is

color 16, which is mapped to pen 7.

If the -pens option is used, the mapping from 16 colors to 8 pens is done using the pentbl.fil file. See the

descriptions of the pentbl.fil and the -pens option.

EXAMPLE:

An application that uses graPHIGS sets up a color table in order to be able to apply color to a given

object. The colors are created by specifying an amount of red, green, and blue in the range of 0.0 to 1.0.

Application specifies Blue as RED=0.1, GREEN=0.3, BLUE=0.9 Application specifies Purple as RED=0.3,

GREEN=0.27, BLUE=0.7.

Note: The application color Blue is just a label that represents the three values of red, green, and blue.

The same values of red, green, blue could also have been the application color Cyan.

graPHIGS then converts the amount of red, green, and blue into red, green, blue value numbers according

to

EXAMPLE:

From the previous example, the application colors Blue and Purple would be converted into:

 | |Rval | Gval | Bval |

 | Blue | 0 | 1 | 2 |

 | Purple| 0 | 1 | 2 |

Note: Two distinct application colors can be mapped to the same set of red (Rval), green (Gval), blue

(Bval) values.

The red, green, blue values are then transformed into GDF file format

EXAMPLE:

From the previous example, the application colors Blue and Purple would both be converted to color 1

(Blue) in the GDF file.

Note: A graPHIGS generated GDF file will only contain color numbers 1 - 16.

Once a GDF file has been created it can then be plotted. The graPHIGS plotting code is also capable of

remapping colors with the -pens option. The setup of the colors on the plotter also plays an important part

in the color mapping process.

Example 1

The graPHIGS plotting code is invoked WITHOUT the -pens option. This is the same as invoking the

plotter code with the -pens option and the default pentbl.fil file. Assume the plotter’s pen colors are set up

to be the same as the GDF color numbers.

Appendix C. Plotting with graPHIGS 383

---------------------------- -----------------------------

 | pentbl.fil (default) | | Plotter |

 ---------------------------- -----------------------------

 | 2 (color priority) | | |

 | Slot GDF Color Diameter| | Slot GDF Color Diameter |

 ---------------------------- -----------------------------

 | 1 1 Blue .3 | | 1 1 Blue .3 |

 | 2 2 Red .3 | | 2 2 Red .3 |

 | 3 3 Magenta .3 | | 3 3 Magenta .3 |

 | 4 4 Green .3 | | 4 4 Green .3 |

 | 5 5 Cyan .3 | | 5 5 Cyan .3 |

 | 6 6 Yellow .3 | | 6 6 Yellow .3 |

 | 7 7 Black .3 | | 7 7 Black .3 |

 | 8 8 Background .3 | | 8 8 Background .3 |

 ---------------------------- ----------------------------

 --

 | GDF file contains | Explanation |

 --

 | 1) a color 2 (Red) line .3mm | 1) pen 2 is selected because it |

 | thick | is the only red pen |

 | 2) a color 1 (Blue) line .9mm | 2) pen 1 is selected because it |

 | thick | is the only blue pen. line |

 | | will be blue and stroked |

 | | multiple times to achieve |

 | | line thickness if -nolw |

 | | option is not used. |

 | 3) a color 5 (Cyan) line .1mm | 3) pen 5 is selected because it |

 | thick | is the only cyan pen. Line |

 | | will be drawn .2mm too wide |

 | | because only .3mm pen |

 | | available |

 | 4) a color 9-16 line any | 4) colors 9-15 will be mapped to|

 | thickness | GDF colors 1-7 (pens 1-7) |

 | | respectively and color 16 |

 | | will be mapped to GDF color |

 | | 7 (pen 7) |

 | | NOTE: colors 9-16 will not |

 | | be remapped if -c16 or |

 | | -v16 option is used |

 --

Example 2

The graPHIGS plotting code is invoked WITHOUT the -pens option. This is the same as invoking the

plotter code with the -pens option and the default pentbl.fil file. The plotter IS NOT set up according to

GDF color defaults.

 ----------------------------- -----------------------------

 | pentbl.fil (default) | | Plotter |

 ----------------------------- -----------------------------

 | 2 (color priority) | | |

 | Slot GDF Color Diameter | | Slot GDF Color Diameter |

 ----------------------------- -----------------------------

 | 1 1 Blue .3 | | 1 7 Black .1 |

 | 2 2 Red .3 | | 2 4 Green .3 |

 | 3 3 Magenta .3 | | 3 3 Magenta .3 |

 | 4 4 Green .3 | | 4 2 Red .3 |

 | 5 5 Cyan .3 | | 5 5 Cyan .3 |

 | 6 6 Yellow .3 | | 6 6 Yellow .3 |

 | 7 7 Black .3 | | 7 1 Blue .3 |

 | 8 8 Background .3 | | 8 8 Background .3 |

 ----------------------------- -----------------------------

 | GDF file contains | Explanation |

 | 1) a color 2 (Red) line .3mm | 1) pen 2 is selected because |

 | thick | pen 2 is still red according |

384 The graPHIGS Programming Interface: Technical Reference

| | to the default color table. |

 | | line will be drawn green. |

 | 2) a color 1 (Blue) line .9mm | 2) pen 1 is selected because |

 | thick | pen 1 is still blue according |

 | | to the default color table. |

 | | line will be drawn black. |

 | | the line will have .2mm gaps |

 | | because the plotting code |

 | | thinks it has a .3mm pen and |

 | | moves the pens accordingly |

 | | to stroke the line to .9mm |

 | 3) a color 12 (Dark Green) line| 3) color 12 is mapped to color |

 | .3mm thick | 4 (green) pen 4 is selected |

 | | because pen 4 is still green |

 | | according to the default |

 | | color table. line will be |

 | | drawn red. |

The -pens option causes the file pentbl.fil to be used for mapping GDF colors and line width values. If the

number at the top of the file is a 1 then a pen will be selected whose pen tip diameter is most appropriate

for the current line thickness. If more than one exist then the pens will be checked to see if one of them is

the desired color. If none of them are the desired color, then the first pen of the correct size is picked. If

the number at the top of the file is a 2 then the correct color will be picked. If more than 1 pen of the

correct color exists, the pen best suited for the current line thickness will be chosen.

Example 3

The graPHIGS plotting code is invoked WITH the -pens option. The plotter IS setup according to the

pentbl.fil. The pentbl.fil option specifies LINE THICKNESS search priority.

 ------------------------------- -----------------------------

 | pentbl.fil | | Plotter |

 ------------------------------- -----------------------------

 | 1 (line thickness priority) | | |

 | Slot GDF Color Diameter | | Slot GDF Color Diameter |

 ------------------------------- -----------------------------

 | 1 7 Black .2 | | 1 7 Black .2 |

 | 2 7 Black .25 | | 2 7 Black .25 |

 | 3 7 Black .3 | | 3 7 Black .3 |

 | 4 4 Green .3 | | 4 4 Green .3 |

 | 5 5 Cyan .7 | | 5 5 Cyan .7 |

 | 6 6 Yellow .7 | | 6 6 Yellow .7 |

 | 7 7 Black .4 | | 7 7 Black .4 |

 | 8 8 Background .3 | | 8 8 Background .3 |

 ------------------------------- -----------------------------

 --

 | GDF file contains | Explanation |

 --

 | 1) a color 7 (Black) line .3mm| 1) first all pens = .3mm are |

 | thick | selected (pens 3,4,8) then |

 | | these pens are searched for |

 | | the desired color. pen 3 is |

 | | selected. |

 | 2) a color 7 (Black) line .7mm| 2) first all pens = .7mm are |

 | thick | selected (pens 5,6) then |

 | | these pens are searched for |

 | | the desired color. since |

 | | neither pen is black the |

 | | first pen of the appropriate |

 | | size is selected (pen 5) |

 | | line will be drawn cyan. |

 | 3) a color 5 (Cyan) line .35mm| 3) since there are no .35mm pens |

 | thick | in the table the closest pen |

 | | size(s) without going over |

 | | are selected (pens 3,4,8) |

Appendix C. Plotting with graPHIGS 385

| | these pens are searched for |

 | | desired color. Since none of |

 | | the pens are cyan, pen 3 is |

 | | selected. line is drawn black.|

 | 4) a color 4 (Green) line .1mm| 4) since there are no .1mm pens |

 | thick | in the table and all the pens |

 | | are > .1mm the closest pen(s) |

 | | is selected (pen 1). line is |

 | | drawn black. |

 --

Example 4

The graPHIGS plotting code is invoked WITH the -pens option. The graPHIGS plotting code is also

invoked WITH the -nolw option. The plotter IS setup according to the pentbl.fil. The pentbl.fil option

specifies LINE THICKNESS search priority.

 ------------------------------ -----------------------------

 | pentbl.fil | | Plotter |

 ------------------------------ -----------------------------

 | 1 (line thickness priority)| | |

 | Slot GDF Color Diameter | | Slot GDF Color Diameter |

 ------------------------------ -----------------------------

 | 1 7 Black .2 | | 1 7 Black .2 |

 | 2 7 Black .25 | | 2 7 Black .25 |

 | 3 7 Black .3 | | 3 7 Black .3 |

 | 4 4 Green .3 | | 4 4 Green .3 |

 | 5 5 Cyan .7 | | 5 5 Cyan .7 |

 | 6 6 Yellow .7 | | 6 6 Yellow .7 |

 | 7 7 Black .4 | | 7 7 Black .4 |

 | 8 8 Background .3 | | 8 8 Background .3 |

 ------------------------------ -----------------------------

 | GDF file contains | Explanation |

 | 1) a color 7 (Black) line .23mm| 1) since there are no .23mm pens |

 | .23mm thick | in the pen table the closest |

 | | pen is selected (pen 2). |

 | | NOTE: the pen was selected |

 | | even though it was |

 | | larger than the line |

 | | to be drawn. the -nolw |

 | | option tells the |

 | | plotting code to pick |

 | | the pen closest in size |

 | | to the desired pen size |

 | | whether it is larger or |

 | | smaller. |

Example 5

The graPHIGS plotting code is invoked WITH the -pens option. The plotter IS setup according to the

pentbl.fil. The pentbl.fil option specifies COLOR search priority.

 ----------------------------- -----------------------------

 | pentbl.fil | | Plotter |

 ----------------------------- -----------------------------

 | 2 (Color search priority) | | |

 | Slot GDF Color Diameter | | Slot GDF Color Diameter |

 ----------------------------- -----------------------------

 | 1 11 Purple .2 | | 1 11 Purple .2 |

 | 2 2 Red .25 | | 2 2 Red .25 |

 | 3 10 Orange .3 | | 3 10 Orange .3 |

 | 4 4 Green .3 | | 4 4 Green .3 |

 | 5 5 Cyan .7 | | 5 5 Cyan .7 |

 | 6 7 Black .8 | | 6 7 Black .8 |

386 The graPHIGS Programming Interface: Technical Reference

| 7 7 Black .4 | | 7 7 Black .4 |

 | 8 8 Background .3 | | 8 8 Background .3 |

 ----------------------------- -----------------------------

 | GDF file contains | Explanation |

 | 1) a color 11 (Purple) line | 1) pen 1 is selected because it |

 | .8mm thick | is the only purple pen even |

 | | though pen 6 would draw the |

 | | line faster |

 | 2) a color 7 (Black) line .9mm| 2) first all color 7 (black) |

 | thick | pens are selected (pens 6,7) |

 | | these pens are then check |

 | | to see which would fill the |

 | | line faster. pen 6 is |

 | | selected. |

 | 3) a color 14 (Mustard) line | 3) first color 14 is searched |

 | .3mm thick | for in the pen table. since |

 | | it is not found it is mapped |

 | | to color 6. Since color 6 is |

 | | also not in the pen table |

 | | pen 1 is used by default. |

 | | line is drawn purple. |

Notes:

1. The above examples work the same way with -c16 or -v16 option except the pen table can have slots

1 - 16 instead of just 1 - 8 and colors 9 - 15 are not mapped to colors 1 - 7 respectively nor is color 16

mapped to color 7.

2. The -nolw option disables line width processing and causes lines to be single stroked. This option may

causes pens sizes to be selected that are greater than the width of the line to be drawn. It is intended

as a means to increase performance.

3. CalComp and Versatec each have color definition files which can be used to further map colors. For

further information, please refer to /usr/lpd/README.ccp for CalComp and /usr/lpd/README.VERSA

for Versatec.

Example Summary

There are many levels in which colors can be mapped. Mapping can take place in just one level or in

multiple levels.

v APPLICATION COLOR - All colors mapped to GDF colors 1 - 16

v GDF FILE COLOR - GDF colors 1 - 16 mapped to graPHIGS pen table file

v graPHIGS PEN TABLE - Maps colors in the pen table to the colors on the plotter

v CalComp color definition file - If CalComp plotter, maps colors from graPHIGS pen table file to plotter

v Versatec color definition file - If Versatec plotter, maps colors from graPHIGS pen table file to plotter

v PLOTTER - Color output

Overview of Color Processing Algorithms used

OPTION 1 (-pens used, priority set to 1 (line thickness))

IF the -nolw option was specified THEN

 search the pen table for the pen(s) that are closest to

 the line width to be drawn. there may be multiple pens equally

 close. the pen(s) selected may be either equal, greater than,

 or less than the line width to be drawn.

 ELSE

 search the pen table for the pen(s) that are closest to

 the line width to be drawn. there may be multiple pens equally

 close. the pen(s) selected may be either less than or equal to

 the line width to be drawn if possible.

 IF all pens in the pen table are greater than desired width THEN

 select the pen closest to the line width to be drawn.

Appendix C. Plotting with graPHIGS 387

IF multiple pens were selected THEN

 from the pens selected as having the desired width search for a pen

 that also has the desired color. there may be multiple pens of the

 desired color. the first one will be selected.

 IF the desired color can not be found THEN

 IF (the -c16 option was not specified) and

 (the -v16 option was not specified) and

 (the desired color is a GDF color in the range of 9 to 16) THEN

 map colors 9-15 to colors 1-7 respectively and map color 16

 to color 7.

 from the pens selected as having the desired width search

 for a pen that also has the remapped color. there may be

 multiple pens of the remapped color. the first one will be

 selected.

 IF the remapped color can not be found THEN

 from the pens selected as having the desired width select

 the first pen.

 ELSE

 from the pens selected as having the desired width select

 the first pen.

OPTION 2 (-pens not used, OR -pens used with priority set to 2 (color))

Note: if -pens not used, the pen table refers to the default table.

 search the pen table for the pen(s) that are the desired color.

 multiple pens can be selected.

 IF the desired color can not be found THEN

 IF (the -c16 option was not specified) and

 (the -v16 option was not specified) and

 (the desired color is a GDF color in the range of 9 to 16) THEN

 map colors 9-15 to colors 1-7 respectively and map color 16

 to color 7.

 search the pen table for the pen(s) that are the remapped color.

 multiple pens can be selected.

 IF the remapped color can not be found THEN

 select the first pen in the pen table.

 ELSE

 select the first pen in the pen table.

 IF multiple pens were selected THEN

 IF the -nolw option was specified THEN

 search the pens that have the desired color for the pen closest

 to the line width to be drawn. there may be multiple pens equally

 close. the first one will be selected. the pen selected may be

 either equal, greater than, or less than the line width to be

 drawn.

 ELSE

 search the pens that have the desired color for a pen closest

 to the line width to be drawn. there may be multiple pens equally

 close. the first one will be selected. the pen selected will be

 less than or equal to the line width to be drawn if possible.

 IF all pens in the pen table are greater than desired width THE

 select the pen closest to the line width to be drawn.

Extended Color Support

When plotting to a CalComp or Versatec plotter using the cpsC1 or cpsV1 programs, the number of colors

supported can be increased to 16 from the default 8 colors by specifying either -c16 as a parameter to the

cpsC1 program or -v16 for the cpsV1 program. These parameters will work in conjunction with -pens and

the pentbl.fil, but -pens is not required for their use. If the pentbl.fil is used with these parameters,

then the number of records in the pentbl.fil must be increased to 17. The first 9 records will remain as

described above, and records 10 through 17 must be added for pen numbers 9 through 16, following the

same format as records 2 through 9. For example:

 1

 1 1 0.3

 2 2 0.3

388 The graPHIGS Programming Interface: Technical Reference

3 3 0.3

 4 4 0.3

 5 5 0.3

 6 6 0.3

 7 7 0.3

 8 8 0.3

 9 9 0.3

 10 10 0.3

 11 11 0.3

 12 12 0.3

 13 13 0.3

 14 14 0.3

 15 15 0.3

 16 16 0.3

Refer to the CalComp and Versatec README files for more information on extended color support.

Note: When using the cpsC1 program for CalComp plotters, the pentbl.fil must be used even if -pens

was not passed to the backend. If the pentbl.fil does not exist, plotting will take place using a

Calcomp default color table with all pens set to black.

Plotting Limitations

There are some differences between what you see on your display and what is plotted:

Reverse Clipping

The graPHIGS API uses underpainting and overpainting to achieve certain results. It does this by first

drawing an object and then drawing over it. On a display, the second color simply overlays the first. In

addition, the background color is often used to block out portions of the underpainted segment. This

graphics feature of blocking out a section of a previously drawn object with another object or graphic

element is called reverse clipping or shielding. When you use a plotter, both objects are drawn.

Patterns

Some of the patterns plotted may not match those used by the graPHIGS API. In addition, user-defined

patterns are mapped to the sixteen supplied patterns using MOD 16 results.

Picture Size

Unless -ispi or -es is specified, plots fill the entire page, keeping the correct aspect ratio. This means that

a circle is always a circle, and a square is always a square.

Annotation Text

Plotters only support those characters with ASCII values less then 128.

Plotting Using the ISPI Interface

The following parameters are ignored when -ispi is used: -af, -noin, -rot, -nopl, -es, -esx and -slow when

using -ispi.

ISPI Limitations

Line types

Only the SOLID line type is supported through ISPI.

Annotation Text

Character shear and direction are not supported. Character spacing and size also differ. Geometric text

should be used for ISPI.

Refer to the CalComp and Versatec README files in the /usr/lpd directory for more information on

plotting to CalComp and Versatec plotters.

Appendix C. Plotting with graPHIGS 389

Problem Determination

If problems are encountered using any of the plotting backends, refer to the log file created for the plot for

any messages which may help determine the cause of the problem.

If it becomes necessary to contact IBM support for resolution, be prepared to forward the following data:

v hardcopy plot

v gdf file

v gl file

v log file

v pen table

v operating system level

v graPHIGS level

v plotter model

v plotter setup

– baud rate, parity

– pen assignments

v name of plotting backend used

v detailed problem description

Forward all items which are available. If it is possible to produce a correct plot as well, forward all

applicable items from this list for the correct plot, along with an explanation of what was done differently.

Plotting on AIX PS/2

Plotting a file on the operating system using AIX PS/2 Personal graPHIGS is essentially the same as

plotting on an RS/6000 using the graPHIGS API with the following exceptions:

v queuing - the command used to schedule a plot on AIX PS/2 is print, not enq. For example,

print -gdffname.gdf -nolw -es

v ISPI Interface - the ISPI interface is provided on the PS/2, but no CalComp or Versatec ISPI libraries

are shipped with AIX PS/2 Personal graPHIGS. Refer to the file /usr/bin/makecps for instructions on

link editing your own ISPI library.

v Options supported - the following limitations apply to parameters which may be passed to AIX PS/2

Personal graPHIGS:

 These parameters are not supported: -af, -angXX, -chopout, -c16, -esx, -hinXX, -hcmXX, -hsfix,

-hsprop, -ldir, -nobord, -nochop, -optf, -VEROUT,

-VMSGS, -VPARM, -v16

-ps=x This parameter must be specified when using -ispi, or

when plotting solid area fill on paper larger than a-size.

Plotting on VM/MVS

GDDM/graPHIGS ships a GDF conversion utility which functions in much the same way as the plotting

modules for the RS/6000 and AIX PS/2.

To enable the supported options parameters, you may edit the CONVERT EXEC or CONVERT CLIST

provided.

390 The graPHIGS Programming Interface: Technical Reference

Plotting CGM Files

Executing Plot Modules Directly

To plot a file, the following syntax can be used:

 /usr/lpd/cgm2hp2 -option filename.cgm

 ^ |

 |------|

where:

v filename.cgm is the name of the file to be plotted.

v filename is derived from the connection identifier. The CGM filename must be the last parameter passed

to the plot module

v - option can be any of the options described below for controlling certain plotting functions.

Note:

v The symbol & may be added after the CGM filename to plot in the background:

 /usr/lpd/cgm2hp2 -option filename.cgm &

 ^ |

 |------|

Examples:

1. To plot the file file.cgm to a plotter attached to the tty0 port:

 /usr/lpd/cgm2hp2 -f /dev/tty0 file.cgm

2. To plot the same file in the background, and to rotate the plot 90 degrees:

 /usr/lpd/cgm2hp2 -tty0 -rot tmp0001.cgm &

3. To convert the file file.cgm to GL2 data:

 /usr/lpd/cgm2hp2 -f plot.gl2 file.cgm

Using Plot Modules as Printer Backends

A plot can be scheduled through smit or by using the enq command.

 enq -P queuename -o option filename.cgm

 ^ |

 |--------|

where:

v queuename is the name of the print queue.

v -option is any option to be passed to the backend program.

v filename.cgm is the name of the CGM file to be plotted.

CGM2HP2 Plotting Options

The following is a list of optional parameters which can be passed to the cgm2hp2 plot module:

 -a# Arc Granularity where # is the maximum error in millimeters allowed between straight line

segments used to approximate arcs and corresponding points on the arc. Decreasing the

value will yield smoother curves.

-c# Hatch space in centimeters where # is a float in the range.

-d dirname Directory for reading and writing files. Equivalent to -ldir option of cpsI1.

-f filename Override the default output filename.

-g filename Map colors to gdf colors (as defined in before applying pen mapping. CGM color table

will not be downloaded when this option is used.

-i# Hatch space in inches where # is a float in the range.

Appendix C. Plotting with graPHIGS 391

-j#,# Line end or join style. Implements the hpgl2 LA command to control line ends and join

styles. Format of argument is:

K,V

K,V,K,V

K,V,K,V,K,V

-l No line width. This option prohibits the multi-stroking of lines to emulate wide lines on pen

plotters. On raster devices, all lines will be drawn with the default pen width.

-m Use penmapping. This option causes cgm2hp2 to use a pen table file pentbl.fil) to

indicate the color indices and thickness of pens installed in a pen plotter (or virtual pens

in a raster device). For raster devices, if the same color scheme that was imbedded in

the original file is desired, this option should not be used.

-n# Indicate the maximum number of virtual pens to use.

-o# Overlap merge control. Controls the combining of colors for overlapping objects when

drawn with a raster plotter.

-r Rotate drawings 90 degrees.

-q# Quality level. # is an integer in the range 0-100. 0 Represents draft quality, and 100

equals premium quality. Effects and granularity are device dependent. Generally, this

controls pen speed on pen plotters.

-s# Replace the scale value used in the file. # is the length in meters along the X axis.

Replacing the scale value results in ALL drawings in a CGM file being rescaled. Line

width and annotation text size are not scaled.

-t filename Specify a new name for the pentbl.fil or a relative path.

-x filename Output the CGM color table to cross reference file, filename.

-M# Media format. Places a media type (MT) instruction into the gl2 file to allow for media

dependent plotter setup. Effects on drawing are device dependent. Valid values for # are:

v 0 - paper

v 1 - transparency film

v 2 - vellum

v 3 - polyester film

v 4 - translucent paper

v 5 - special paper

v 6 - glossy paper

-S# Control the type of pen sorting done at the plotter.

v 0 - no sorting

v 1 - Pen sorting

v 2 - Endpoint Swap

v 4 - Geographic sorting

v 8 - optimum sorting (device dependent)

Boolean combination of 1-4 are allowed (i.e. 3=Pen and endpoint sort)

Defaults

 Output filename If the input filename ends in .cgm, the .cgm extension is replaced with .gl2.

Otherwise, the extension .gl2 is appended to the filename. If the filename is longer

than 16 characters, the the first 12 characters of the filename are taken and .

filenames are the same, the first character of the output filename is incremented (If it

the first character was C, it will be changed to a D).

Number of Pens 255

Penwidth Used

Penmap file Not used

Penmap file name pentbl.fil

Drawing Scale .

392 The graPHIGS Programming Interface: Technical Reference

Dirname Set to the directory indicated in the GPPLOTDIR environment variable. If GPPLOTDIR is

not set, uses the directory set in the PWD environment variable. If neither of them is

set, the current directory is used.

Hatchspace Variable with drawing scale

Quality Level Device default

Sort Type Device default

Overly Merge Off

join style 1,1,2,1,3,5 - Butted ends, mitered joins, with a limit of 5.

arc granularity .

Limitations

 HPGL2 This code is designed to convert CGM produced by the graPHIGS API to hpgl2.

It is assumed that the plotter buffers are large enough to render polygons and annotation text

generated by the graPHIGS application.

The default font of the output device is used to render annotation text.

CGM No attempt is made to interpret CGM parameters that are not varied by graPHIGS CGM. As a

result, it is unlikely that CGM files from non-graPHIGS applications would be correctly

converted by this application.

Unsupported CGM orders are skipped and a warning is written to standard error.

Cell Array, produced by the use of the graPHIGS pixel primitives (GPPXL2, GPPXL3) is not

supported.

Usage Notes

For raster plotters the following options are recommended:

 -n# Where # is the largest CGM color table accessed

For pen plotters the following options are recommended:

 -n# To skip downloading color table beyond the number of pens in the pentable file.

-m To use penmap file

-g To map pen colors to 16 gdf pen colors

Printing to devices attached to the parallel ports

In order to print to a device attached to the parallel port, you need to first generate a .gl2 file using the

methodology above. (The queueing system protocols do not support directly writing to the parallel port.)

The .gl2 file can then be printed using lpr or enq printer is not already supported as a virtual printer, you

need to define it as type opp (other parallel printer).

Differences between raster and pen plotter devices.

HPGL2 color raster devices generally support user defined color tables with up to 255 entries. The

graPHIGS CGM includes a 255 entry color table. By default, this entire color table is downloaded to the

output device, so that the printed colors will match the colors displayed by the graPHIGS application.

Pen plotters are limited to the colors of pens inserted in their carousels. By default cgm2hp2 will attempt

to set the plotter pen to match the entry number of the CGM color table. The default CGM color table

follows:

Appendix C. Plotting with graPHIGS 393

0. 0, 0, 0 Black

 1. 255, 255, 255 White

 2. 255, 0, 0 Red

 3. 0, 255, 0 Green

 4. 0, 0, 255 Blue

 5. 255, 255, 0 Yellow

 6. 255, 0, 255 Magenta

 7. 0, 255, 255 Cyan

 8. 255, 255, 255 White

 screen

 screen

 screen

 255. 255, 255, 255 White

Note: Black, (background) is color table entry 0. On pen plotters, pen 0 corresponds to draw with no pen,

or draw in background. If color table entry 0 is used and it represents a color other than

background, you need to map it to another pen using a pen table file. See the description below.

Pen table file

The format is the same as the pentbl.file for the cpsX1 utilities described in However, the number of

entries may range between 1 and 255. If the number of pens exceeds the number of slots available on the

plotter, the plotter will perform modular division to pick the pen number. Therefore, if the CGM color table

is larger than the number pens available multiple pens can be mapped to a single slot by repeating as

follows:

 1 1 1.3

 2 2 0.3

 3 4 0.3

 4 3 1.3

 5 6 1.3

 6 6 0.3

 7 7 1.3

 8 8 1.3

 1 9 1.3

 2 2 0.3

 3 4 0.3

 4 3 1.3

 5 6 1.3

 6 6 0.3

 7 7 1.3

 8 10 1.3

This pentbl will map colors 1,9 to pen 1 and colors 8 and 10 to pen 8. If pen mapping by color is selected

and there is no entry for a color table entry, the pen number defaults to pen 0 (background color).

To map the default CGM colors to the default gdf colors, use the following color table:

 CGM Table GDF Color

 Entry Number R G B Name

 --------- ----------- ---- ---- ---- --------

 1 4 0.3 4 1 0, 0 255 Blue

 2 2 0.3 2 2 255 0 0 Red

 3 6 0.3 6 3 255 0 255 Magenta

 4 3 0.3 3 4 0 255 0 Green

 5 7 0.3 7 5 0 255 255 Cyan

 6 5 0.3 5 6 255 255 0 Yellow

 7 7 0.3 0 7 0 0 0 Black

 8 8 0.3 1 8 255 255 255 White

Additionally, if pens of multiple widths are used, you may want to to select pens based on penwidth. The

pentable can also accomplish this. Selecting pens based on penwidth may may reduce or eliminate

multi-stroking. If the penwidth exactly matches the width of the line being drawn multi-stroking can be

394 The graPHIGS Programming Interface: Technical Reference

completely eliminated using the -l option. Otherwise, the multi-stroking can be reduced by using the

pentable file to pick the closest pen. Be sure to set the plotters front panel to accurately reflect the actual

pen width in use.

Appendix C. Plotting with graPHIGS 395

396 The graPHIGS Programming Interface: Technical Reference

Appendix D. Printing with graPHIGS

The graPHIGS API provides the capability of converting CGM files produced by the graPHIGS API to

PostScript for printing on any PostScript printer.

For more information about converting CGM to Postscript, see the file /usr/lpd/cgm2ps.readme.

© Copyright IBM Corp. 1994, 2002 397

398 The graPHIGS Programming Interface: Technical Reference

Appendix E. How the Mnemonics are Generated

 Table 144. Tuning Information

Diagnosis, Modification or Tuning Information

Diagnosis, Modification or Tuning Information is provided as additional guidance on the creation of mnemonics used

in the product. This information should never be used as programming interface information.

You may want to know how mnemonics are generated for subroutine calls in the graPHIGS API. Where

possible with the two-letter sentinel used by all graPHIGS API calls, “GP,” the abbreviations match those

used in the GKS language binding. The GKS abbreviation is noted in parentheses when the graPHIGS

API abbreviation differs. Words from which no letters are used for forming the mnemonic are categorized

as deletions.

(X) indicates deletion (in some cases). () indicates the GKS abbreviation, if different.

Deletions

Active

And

At

Available

Between

Capabilities

Class(CL)

Contain

Content

Control

Device

Entries

Factor

From

Function

Identifier

In

Internal

List

Local

Maximum

More

Of

Output

Point

Set

Supported

Surface

Table

To

Vector

Which

With

Abbreviations

 Table 145. Abbreviations

Action AC (X)

Activate AC

Actual A (X)

© Copyright IBM Corp. 1994, 2002 399

Table 145. Abbreviations (continued)

Add AD

Alarm AL

Alignment AL

All A (X)

Annotation AN,A

Aperture A

Application A

Approximation A

Arc A

Aspect A

Associate A

Asynchronous A

Attach AT

Attribute A

Await AW

B-Spline B

Back B

Base B

Break BK

Broadcast B

Buffer B

Calculation C

Category C

Character CH

Character Set CS,S

Characteristics CH,C

Choice CH

Circle CR

Circular CR

Class Name CN

Close CL

Code CD

Color C

Comparison C

Compose C

Compute C

Conditionally C

Configuration C

Connect C

Connection C

Convert CV

400 The graPHIGS Programming Interface: Technical Reference

Table 145. Abbreviations (continued)

Coordinate CO

Copy CP

Create CR

Criteria C

Cue C

Cull C

Culling C

Current C

Curve C

Data D (X)

Deactivate DA

Default D

Defer DF

Deferral DF,D

Define DF (X)

Definition D

Delete DL,D (D)

Depth D

Detach DT

Direct D

Disassociate D

Disconnect D

Disjoint D

Display D

Distinguish D

Draw D

Edge E

Edit ED

Element E

Ellipse EL

Elliptical EL

Empty E

End E

Entries E (X)

Error E (X)

Escape ES (ESC)

Event EV,E

Execute EX

Existence E

Exit EXIT

Expansion XP

Appendix E. How the Mnemonics are Generated 401

Table 145. Abbreviations (continued)

Extended X

Extent EX,XT

Face F

Facilities F (X)

Fill F

Filter F

Flag F

Flush FL,F

Font FO,F

Font Directory FD

Frame F

Generalized G

Geometric G

Get GT

Global GL

Grid G

Handling HND (X)

Hatch HA,H

Height H

Hierarchical H

Highlight HL (HLIT)

HLHSR H

Identifier ID,I (X)

Image I

Image Board IB

Index I

Initialize IN,I

Initiate IN

Input I

Inquire Q

Insert IN

Interior I

Invisibility IV

Label LB

Length L

Level L

Light L

Line L

Linetype LT (LN)

Linewidth LW

Locator LC

402 The graPHIGS Programming Interface: Technical Reference

Table 145. Abbreviations (continued)

Logging LOG

Logical L

Mapping MP

Marker M (MK)

Markertype MT (MK)

Mask M

Matrix MT (M)

Message MSG,MS

Methods M

Mode MO (M)

Model M,ML

Modeling ML

Network NT,N

Non-Uniform N

Normal N

Nucleus NC,N

Number N (X)

Offset O

Open OP

Operations O

Overflow O

Pack P

Parameter P

Password PW

Path PT (P)

Pattern PA,P

Physical P

Pick PK

Pixel PXL (PX)

Plane PL (X)

Pointer P

Polygon PG,G

Polyhedron PH

Polyline PL,L

Polymarker PM,M

Pool P

Positioning P

Precision PR

Predefined P

Primary P

Primitive P (X)

Appendix E. How the Mnemonics are Generated 403

Table 145. Abbreviations (continued)

Prior P

Priority P

Private P

Processing P

Properties P

Quantization Q

Queue Q

Range R

Ratio R

Record REC

Rectangle RCT

Redraw R

Reference R (RF)

Remove R

Rendering R

Representation R

Request RQ,R

Resource R

Return R

Root R

Rotate ROT

Sample SM

Scale SC

Secondary S

Select S

Send S

Shell SH

Simultaneous S

Size S (X)

Sound SD

Source S

Spacing SP

Specular S

Sphere SPH

State S (X)

Storage S

String ST

Strip S

Stroke SK

Structure ST,S (X)

Structure Store SS

404 The graPHIGS Programming Interface: Technical Reference

Table 145. Abbreviations (continued)

Style S

Surface S

Synchronize SYNC

System SY (X)

Terminate TM

Test T

Text TX,T

Trace TRCE

Transformation XF,X (T)

Translate TRL

Transparency T

Triangle T

Trigger T

Trimmed T

Type T

Up UP

Update UP (X)

Utilization U

Valuator VL

Value V

Variability V

View V

Workstation WS,W (WK)

Write W

Appendix E. How the Mnemonics are Generated 405

406 The graPHIGS Programming Interface: Technical Reference

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Dept. LRAS/Bldg. 003

11400 Burnet Road

Austin, TX 78758-3498

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1994, 2002 407

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (c)

Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AIX

 AIXwindows

 GDDM

 IBM

 RS/6000

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

408 The graPHIGS Programming Interface: Technical Reference

Index

A
about this book vii

ADIB
see application defaults interface block 189

aixtrace 190

application defaults interface block 189

application intercept exit routine 181

ARCHIVE 191

C
character code

points and symbols 224

character set facilities 221

using 222

character sets
French (ASCII) Primary 244

French (EBCDIC) Primary 244

German (ASCII) Primary 243

German (EBCDIC) Primary 242

ISO 8859-2 Character Set (11). Font 1

(Primary) 254

ISO 8859-5 Cyrillic Character Set (12). Font 1

(Primary) 255

ISO 8859–1 Latin 1 (ASCII) Primary 254

ISO 8859–1 Latin 1 (EBCDIC) Primary 253

Italian (ASCII) Primary 246

Italian (EBCDIC) Primary 245

Kanji 223

Katakana (ASCII) Font 2 248

Katakana (ASCII) Primary 247

Katakana (EBCDIC) Font 2 248

Katakana (EBCDIC) Primary 246

Multi-Language (ASCII) Primary 251

Multi-Language (EBCDIC) Primary 250

Single-Byte Korean (ASCII) Primary 252

Single-Byte Korean (EBCDIC) Primary 252

Sweedish (ASCII) Primary 250

Sweedish (EBCDIC) Primary 249

UK English (ASCII) Primary 242

UK English (EBCDIC) Primary 241

unicode 223

US English (ASCII) Complex Italic 228

US English (ASCII) Complex Roman 227

US English (ASCII) Complex Script 229

US English (ASCII) Duplex Roman 231

US English (ASCII) Filled, Proportional,

Filled-Proportional 240

US English (ASCII) Gothic English 232

US English (ASCII) Gothic German 233

US English (ASCII) Gothic Italic 235

US English (ASCII) Primary 225

US English (ASCII) Simplex Roman 236

US English (ASCII) Triplex Italic 237

US English (ASCII) Triplex Roman 239

US English (EBCDIC) Complex Italic 227

US English (EBCDIC) Complex Roman 226

character sets (continued)
US English (EBCDIC) Complex Script 229

US English (EBCDIC) Duplex Roman 230

US English (EBCDIC) Filled, Proportional,

Filled-Proportional 239

US English (EBCDIC) Gothic English 231

US English (EBCDIC) Gothic German 233

US English (EBCDIC) Gothic Italic 234

US English (EBCDIC) Primary 225

US English (EBCDIC) Simplex Roman 235

US English (EBCDIC) Triplex Italic 237

US English (EBCDIC) Triplex Roman 238

character sets provided by the API 223

chgPcon command 165

CLDEVS 203

CMSTRCE 191

COMBSZ 192

commands
chgPcon 165

gPafut 149

gPgated 168

gPhost 152

gPinit 149

gPq 153

gPterm 154

ls6098 171

lsgPcon 172

makegP 155

mkgPcon 174

COMMENT 192

conference controller 179

conference utility controller
stopping and starting 179

conferencing
enabling user exits for 177

connectivity
host and workstation 157

CONNID 202

controlling the environment
overview 187

D
daemons

gateway 157

DAPPATH 192

DCMETERS 204

DCTES 204

DCUNITS 204

DEFACTF 193

defaults 190

controlling the environment 187

DEFNUC 193

DIRCOLOR 205

displaying a text string 260

DISPLMOD 205

double-byte code points 258

DUMPFLGS 205

© Copyright IBM Corp. 1994, 2002 409

DUMPPRFX 206

E
EBTES 206

ECHOMETH 207

ERREVENT 194

event data formats 367

F
FBUFFER 207

font editor 257

font file organization 264

FONTLIST 208

FONTPSIZ 208

fonts
considerations 258

user-definable 257

fonts provided by the API 223

G
gateway daemon 157

gPafut 149

gPhost 152

gPinit 149

gPq 153

gPterm 154

graPHIGS/GAM direct connection 163

H
HCHECK 195

highlighting conventions vii

host and workstation connectivity 157

HWCURS 209

I
IBTES 209

identifying a character set 221

identifying a font 221

IMAGEFMT 210

IQSIZE 195

iso 9000 vii

K
KEYBOARD 210

L
LOCDEVS 211

ls6098 171

lsgPcon 172

LSTES 211

M
makegP 155

MAXWKS 196

mkgPcon 174

mnemonics
generation 399

N
NICKCHK 196

nicknames 199

controlling the environment 187

NUC/TONUC 197

nucleus 145

nucleus description table 146

P
PLBTES 211

plotting 371

plotting CGM files 391

plotting on AIX PS/2 390

plotting on VM/MVS 390

PMBTES 212

PNTHLHSR 212

points and symbols 224

PROCOPT 203

PROCOPT parameters table 215

procopts 203

R
related publications vii

routines
application intercept exit 181

user exit 179

S
SOCKETS connection method 161

state lists 349

STRDEVS 212

structure element content
by GPQE 333

by GPQED 279

supported workstations 15

symbols and points 224

SYNCPROC 197

T
TOCONNID 202

TOWSTYPE 203

TRACE 198

translation tables 258

TRTABLE 198

TSOTRCE 199

TXBTES 213

410 The graPHIGS Programming Interface: Technical Reference

U
unicode character set

using 223

user exit routine 179

user exits
enabling 177

user-definable fonts 257

V
VWTBLSZ 213

W
who should use this book vii

workstation description tables 65

workstations
accessing 3

general info 3

WSTYPE 203

X
X workstation 15

XNAME 214

XNOCLRMP 214

XWINDASP 214

XWINDID 215

Index 411

412 The graPHIGS Programming Interface: Technical Reference

Readers’ Comments — We’d Like to Hear from You

The graPHIGS Programming Interface: Technical Reference

 Publication No. SC33-8193-11

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-8193-11

SC33-8193-11

���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department 04XA-905-6C006

11501 Burnet Road

Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A.

SC33-8193-11

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	ISO 9000
	Related Publications

	Part 1. Workstations
	Chapter 1. General Information for Workstations
	Accessing a Workstation
	Workstation Types
	Connection Identifiers

	Description Tables in the graPHIGS API
	The graPHIGS API Traversal State List
	Workstation View Table Data

	Chapter 2. Supported Workstations
	The X Workstation Family
	The graPHIGS API in the X11 Windowing Environment
	Supported Hardware for the X Workstation
	Opening the X Workstation
	Window Creation
	XCreateWindow
	Additional Capabilities Available on RS/6000
	PROCOPTs Supported by the X Workstation
	X Events
	Interaction of X and graPHIGS API Color Resources

	Additional Notes for DWA Adapters
	The graPHIGS API and X Input Relationship
	How the graPHIGS API Uses X Window System Cursors
	How the graPHIGS API Handles X Window System Errors
	Editing in Quick Update Mode

	The XSOFT Workstation
	Overview
	Understanding XSOFT
	General Information
	Configuring a graphics workstation for XSOFT

	The 6090 Workstation
	Workstation Configuration
	Transformation Matrixes
	Temporary Views
	View Mapping

	The 5080 Workstation
	General Information
	Workstation Configuration
	Display Models
	Class Set
	Transformation Matrixes
	Temporary views
	View Mapping

	The GDDM Workstation
	Class Set
	View Mapping

	The GDF Workstation
	General Information
	Class Set
	GDF Conversion Utility
	View Mapping

	The CGM Workstation
	General Information
	Class Set
	View Mapping
	CGM File Structure
	Conformance
	Workstation Dependent Output
	Other Considerations for CGM

	The IMAGE Workstation
	Overview
	Output Formats
	Adobe PostScript Page Description Language
	Adobe Encapsulated PostScript
	Color Model
	Default Coordinate System
	Contents of graPHIGS PostScript Images
	Processing graPHIGS EPS Files Using sed
	IOCA Function Set 10 (FS10)
	Output Filenames
	Image Size and Resolution

	Chapter 3. Workstation Description Tables
	General Workstation Facilities
	All Workstations
	X
	6090 and 5080
	IMAGE
	GDF
	CGM

	General Output Facilities
	X
	XSOFT
	6090
	5080
	IMAGE
	GDF
	CGM

	Polyline Facilities
	X
	XSOFT
	6090
	5080
	GDDM*
	IMAGE
	GDF
	CGM

	Polymarker Facilities
	X
	6090
	5080
	CGM

	Text Facilities
	X
	XSOFT
	6090
	5080
	GDDM
	IMAGE
	GDF
	CGM

	Interior Facilities
	X
	6090
	5080
	GDDM
	GDF
	CGM

	Edge Facilities
	X
	XSOFT
	6090
	5080
	GDDM
	IMAGE
	CGM

	Color Facilities
	X
	XSOFT
	6090
	5080
	GDDM
	IMAGE
	GDF
	CGM

	Generalized Drawing Primitive (GDP) Facilities
	X
	6090
	5080

	Generalized Structure Element (GSE) Facilities
	X
	XSOFT
	IMAGE

	Escape Facilities
	Image Facilities
	Advanced Output Facilities
	X
	XSOFT
	6090

	Curve and Surface Facilities
	Advanced Attribute Facilities
	X
	XSOFT
	6090

	General Input Facilities
	X and XSOFT
	6090
	5080
	GDDM

	Available Triggers
	Locator Devices
	X and XSOFT
	6090
	5080
	GDDM

	Stroke Devices
	X and XSOFT
	6090, 5080
	GDDM

	Valuator Devices
	X AND XSOFT
	6090, 5080

	Choice Devices
	X and XSOFT
	6090
	5080

	Pick Devices
	X and XSOFT
	6090
	5080
	GDDM

	String Devices
	X and XSOFT
	6090
	5080
	GDDM

	Button Devices
	Scalar Devices
	Vector Devices
	Break Action

	Part 2. Distributed graPHIGS API
	Chapter 4. The graPHIGS API Nucleus
	Connecting to the Nucleus
	Managing the graPHIGS API Nucleus in AIX
	The Remote graPHIGS API Nucleus's TCP/IP Port Number (RS/6000 only)

	The Nucleus Description Table
	gPafut Command
	Purpose
	Syntax
	Description

	gPinit Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Files
	Related Information

	gPhost Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Files
	Related Information

	gPq Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Files
	Related Information

	gPterm Command
	Purpose
	Syntax
	Description
	Flags
	Files
	Related Information

	makegP Command(AIX PS/2 only)
	Purpose
	Syntax
	Description
	Files

	Chapter 5. graPHIGS API Host and Workstation Connectivity
	The graPHIGS API Gateway Daemon
	Overview
	Customizing the graPHIGS API Gateway Daemon
	Activating the graPHIGS API Gateway Daemon
	Activating the User Workstation
	Using the graPHIGS API Gateway Daemon
	Customizing the Application Environment
	Memory Configuration and Application Performance
	The gPgated TCP/IP Port Number (RS/6000 only)

	The SOCKETS Connection Method
	Overview
	Prerequisites
	Specifying the Target Nucleus
	Run-Time Errors
	Configuration Details

	graPHIGS/GAM Direct Connection
	Overview
	Customizing the 6098 with FDDI Feature
	Activating the User Workstation
	Using the graPHIGS/GAM Direct Connection
	Customizing the Application Environment

	chgPcon Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Files
	Related Information

	gPgated Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Files
	Related Information

	ls6098 Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Files
	Related Information

	lsgPcon Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Files
	Related Information

	mkgPcon Command
	Purpose
	Syntax
	Description
	Flags
	Examples
	Files
	Related Information

	Chapter 6. Enabling User Exits for Conferencing
	Starting and Stopping the Conference Utility Controller
	The Conference Controller
	The User Exit Routine
	The Application Intercept Exit Routine
	Invoking the Application Intercept Exit Routine
	Application Intercept Exit Call Through to the graPHIGS API
	Preparing to Disable the Intercept Exit Routine
	Passing Error Handler Calls from the graPHIGS API to the Application

	Part 3. Defaults and Nicknames
	Chapter 7. Controlling the Environment with Defaults and Nicknames
	Overview of Controlling the Environment
	The External Defaults File (EDF)
	Format of the User-Defined Specification (UDS)

	The Application Defaults Interface Block (ADIB)
	Format of the ADIB

	Defaults
	AIXTRCE (AIX Trace Output)
	ARCHIVE (File Descriptors)
	CMSTRCE (CMS Trace Output)
	COMBSZ (Input and Output Buffer Sizes)
	COMMENT (Programming Comments)
	DAPPATH (DAP Download File Path)
	DEFACTF (Activate Font Handling)
	DEFNUC (Define Nucleus Connection Processing)
	ERREVENT (Enable Error Event)
	HCHECK (Shell Syntax Checking)
	IQSIZE (Input Queue Size)
	MAXWKS (Maximum Workstation Support)
	NICKCHK (Nickname Processing Default)
	NUC/TONUC (Nucleus Respecification)
	SYNCPROC (Synchronous X Event Processing)
	TRACE (Trace Control Word)
	TRTABLE (Trace Table Entries)
	TSOTRCE (TSO Trace Output)

	Nicknames
	How the graPHIGS API Processes Nicknames
	Nickname Syntax
	CONNID (Connection Identifier)
	TOCONNID (Target Connection Identifier)
	WSTYPE (Workstation Type)
	TOWSTYPE (Target Workstation Type)
	PROCOPT (Processing Options)
	Nickname Example

	PROCOPTS
	CLDEVS (Create Input Device)
	DCMETERS (Device Coordinate Meters)
	DCTES (Depth Cue Table)
	DCUNITS (Device Coordinate Address Units)
	DIRCOLOR (Direct Color)
	DISPLMOD (Display Model)
	DUMPFLGS (Dump Flags)
	DUMPPRFX (Dump Prefix)
	EBTES (Edge Bundle Table)
	ECHOMETH (Input Echo)
	FBUFFER (Frame Buffer Configuration)
	FONTLIST (Character Font List)
	FONTPSIZ (Font Pool Size)
	HWCURS (Hardware Crosshair Cursor)
	IBTES (Interior Bundle Table)
	IMAGEFMT (Image Output Format)
	KEYBOARD (Language Keyboard)
	LOCDEVS (Locator Devices)
	LSTES (Light Source Table)
	PLBTES (Polyline Bundle Table)
	PMBTES (Polymarker Bundle Table)
	PNTHLHSR (Annotation Text and Marker Hidden Line Hidden Surface Removal)
	STRDEVS (String Devices)
	TXBTES (Text Bundle Table)
	VWTBLSZ (View Table Entries)
	XNAME (X Default String)
	XNOCLRMP (Do Not Create an X Color Map)
	XWINDASP (Window Aspect Ratio)
	XWINDID (X Window Identifier)
	PROCOPT Parameters Table

	Part 4. Character Sets and Fonts
	Chapter 8. Character Set Facilities of the graPHIGS API
	Identifying a Character Set
	Identifying a Font
	Using the Character Set Facilities

	Chapter 9. Character Sets and Fonts Provided by the API
	Using the Unicode Character Set
	Using Kanji Character Sets in the Operating System
	Character Code Points and Symbols

	Chapter 10. User-Definable Fonts
	Defining Your Own Characters
	Font Editor
	Assigning ASCII and EBCDIC Code Points
	Translation Tables
	Font Considerations
	Creating New Double-Byte Code Points

	Displaying a Text String
	Font Description Coordinate System
	Symbol Position and Inter-Symbol Alignment
	Text Extent Rectangle
	Text Alignment
	Mapping Font Coordinates to Modeling Coordinates

	Font File Organization Overview
	Single-Byte Character Sets
	Double-Byte Character Sets

	Overview of Font File Contents
	Character Set Files
	Header
	Variable Data
	Symbol Definition File
	Header
	Variable Data

	Font File Naming Conventions
	Character Set Files
	Symbol Definition Files

	Font File Format Specifications
	Single-Byte Character Set File Format
	Field Content Description
	Double-Byte Character Set File Format
	Field Content Description
	Symbol Definition File Format
	Field Content Description

	IBM 5080 Character Set Restrictions

	Part 5. Format and Content of Structure Element Records
	Chapter 11. Structure Element Content as Returned by GPQED
	General Format
	Structure Element Codes
	Common Data Types
	Output Primitives
	Line Primitives
	Marker Primitives
	Annotation Text Primitives
	Geometric Text Primitives
	Area Primitives
	Pixel Primitives

	Attribute Setting Structure Elements
	General Attributes
	Attribute Selection
	Polyline Attributes
	Polymarker Attributes
	Text Attributes
	Annotation Text Attributes
	Polygon Attributes
	Interior Attributes
	Edge Attributes

	Transformation Setting Structure Elements
	Modeling Transformation

	Miscellaneous Structure Elements
	View selection
	Traversal Control
	Identification
	Frame Buffer Control
	Application-Defined Data

	Chapter 12. Structure Element Content as Returned by GPQE
	Output Primitives
	Annotation 2 (GPAN2)
	Annotation 3 (GPAN3)
	Circle 2 (GPCR2)
	Circular Arc 2 (GPCRA2)
	Disjoint Polyline 2 (GPDPL2)
	Disjoint Polyline 3 (GPDPL3)
	Ellipse 2 (GPEL2)
	Ellipse 3 (GPEL3)
	Elliptical Arc 2 (GPELA2)
	Elliptical Arc 3 (GPELA3)
	Pixel 2 (GPPXL2)
	Pixel 3 (GPPXL3)
	Polygon 2 (GPPG2)
	Polygon 3 (GPPG3)
	Polyline 2 (GPPL2)
	Polyline 3 (GPPL3)
	Polymarker 2 (GPPM2)
	Polymarker 3 (GPPM3)
	Geometric Text 2 (GPTX2)
	Geometric Text 3 (GPTX3)

	Attributes
	Set Polyline Index (GPPLI)
	Set Polymarker Index (GPPMI)
	Set Text Index (GPTXI)
	Set Interior Index (GPII)
	Set Edge Index (GPEI)
	Set Linetype (GPLT)
	Set Linewidth Scale Factor (GPLWSC)
	Set Polyline Color Index (GPPLCI)
	Set Polyline Endtype (GPPLET)
	Set Marker Type (GPMT)
	Set Marker Size Scale Factor (GPMSSC)
	Set Polymarker Color Index (GPPMCI)
	Set Text Font (GPTXFO)
	Set Text Precision (GPTXPR)
	Set Character Expansion Factor (GPCHXP)
	Set Character Spacing (GPCHSP)
	Set Annotation Height Scale Factor (GPAHSC)
	Set Text Color Index (GPTXCI)
	Set Character Height (GPCHH)
	Set Character Up Vector (GPCHUP)
	Set Geometric Text Path (GPTXPT)
	Set Geometric Text Alignment (GPTXAL)
	Set Interior Style (GPIS)
	Set Interior Style Index (GPISI)
	Set Interior Color Index (GPICI)
	Set Edge Flag (GPEF)
	Set Edge Linetype (GPELT)
	Set Edge Color Index (GPECI)
	Set Edge Scale Factor (GPESC)
	Set Attribute Source Flag (GPASF)

	Modeling and Viewing
	Set Modeling Transformation 3 (GPMLX3)
	Set Modeling Transformation 2 (GPMLX2)
	Set Global Transformation 3 (GPGLX3)
	Set Global Transformation 2 (GPGLX2)

	Miscellaneous Structure Elements
	Add Class Name to Set (GPADCN)
	Execute Structure (GPEXST)
	Set Highlighting Color Index (GPHLCI)
	Insert Application Data (GPINAD)
	Insert Label (GPINLB)
	Set Pick Identifier (GPPKID)
	Remove Class Name from Set (GPRCN)

	Appendix A. State Lists
	Operating States List (OSL)
	Data Type Field

	The graPHIGS API Descriptor Table (PDT)
	Data Type Field

	The graPHIGS API State List (PSL)
	Data Type Field

	Structure Store State List (SSL)
	Data Type Field

	Workstation State List (WSL)
	Data Type Field

	The graPHIGS API Error State List (ESL)
	Data Type Field

	Utility Function State List (USL)
	Data Type Field

	Appendix B. Event Data Formats
	Event Summary
	Event Data Format
	Locator Event (Event Class 1)
	Stroke Event (Event Class 2)
	Valuator Event (Event Class 3)
	Choice Event (Event Class 4)
	Pick Event (Event Class 5)
	String Event (Event Class 6)
	Window Exposure Event (Event Class 106)
	Application Message Event (Event Class 201 and 202)

	Appendix C. Plotting with graPHIGS
	Plotting on the RS/6000
	Plotting GDF Files
	Executing Plot Modules Directly
	Using Plot Modules as Printer Backends
	Plotting Options
	Mapping GDF Colors to Pen Numbers
	Plotting Limitations

	Plotting on AIX PS/2
	Plotting on VM/MVS
	Plotting CGM Files
	Executing Plot Modules Directly
	Using Plot Modules as Printer Backends
	CGM2HP2 Plotting Options
	Printing to devices attached to the parallel ports
	Differences between raster and pen plotter devices.

	Appendix D. Printing with graPHIGS
	Appendix E. How the Mnemonics are Generated
	Deletions
	Abbreviations

	Appendix F. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

